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ABSTRACT 

The epidemicity of metabolic diseases such as obesity and diabetes 

globally has become a public health concern. Therefore, understanding 

interactions of macronutrients such as glucose and micronutrients such as 

vitamin A (VA) has become urgent. Both skeletal muscle and adipose tissues are 

critical for the regulation of glucose homeostasis.  Retinoid acid (RA) is an active 

metabolite of retinol which mediates the major functions of VA. RA and insulin 

signals have been shown to regulate glucose metabolism. However, their roles in 

glucose metabolism in skeletal muscle and adipocytes remain to be revealed. 

We postulate that insulin and RA signals may work together to regulate glucose 

metabolism in skeletal muscle cells and adipocytes. In the first study, the glucose 

transporter 4 (GLUT4) expression were measured in L6 myocyes treated with 

increasing doses of RA in the absence or presence of insulin for 6 days. RA and 

insulin were found to inhibit the expression levels of GLUT4 in L6 cells after 4 

and 6 days of treatment. The synergy inhibition effects of RA and insulin on 

GLUT4 can be observed at Day 4 with RA at 1 μM RA. To study the RA effects 

on adipocytes, recombinant adenoviruses were used to overexpress retinoid X 

receptor α (RXRα) and chicken ovalbumin upstream transcription factor II 

(COUP-TFII), two transcription factors with the potential to mediate RA signaling. 

3T3-L1 CARΔ1 cells were transfected with ad-β-gal, ad-RXRα or ad-COUPTFII 

and treated with increasing RA doses during differentiation. Lipid accumulation 

and GLUT4 protein level were examined. Interestingly, overexpression of RXRα 

enhanced the inhibitory effects of RA on lipid accumulation. Moreover, the 

inhibitory effect of RA on GLUT4 expression can be attenuated in the presence 

of RXRα overexpression. The overexpression of COUPTFII may enhance the 

inhibitory effects of RA on the expression of GLUT4. The fact that RA and insulin 

synergized to inhibit the GLUT4 expression in L6 cells seems to indicate that 

cautions should be taken when VA supplement is recommended for patients with 

diabetes or obesity. 
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CHAPTER ONE 

INTRODUCTION 

Glucose metabolism is of great importance to be completely understood. 

Glucose is a common fuel for a variety of cells. For example, red blood cells in 

the circulation are responsible for oxygen transport in the body. They can only 

use glucose as an energy source.1 Neurons also prefer glucose as an energy 

source, while other types of cells may obtain energy through protein and fat 

metabolism.2 In addition, the abnormal glucose metabolism in the brain may lead 

to the development of brain diseases like Alzheimer's disease.3 

Another important function of cellular glucose metabolism is to regulate 

the immune function of lymphocytes.4 The inefficient uptake of glucose in 

lymphocytes can result in cell death, while excessive uptake of glucose will lead 

to over activation of immune responses which may cause the development of 

immune pathology.4 If we can understand the regulation of glucose metabolism, 

it may be helpful for us to develop intervention methods for the prevention and 

treatment of diseases related to immunology such as cancer5 or autoimmunity.6 

What’s more, glucose metabolism is an essential part of the whole-body 

glucose homeostasis. The pancreatic hormones, insulin, glucagon, and 

somatostatin work together to regulate glucose homeostasis.7 Alterations of 

glucose metabolism are associate with endocrine or nutritional chronic diseases 

such as diabetes8 and obesity9. Changes in glucose metabolism such as 

hyperglycemia in fasting and postprandial states are important biomarkers for the 

early detection of myocardial infarction.10 In summary, the regulation of glucose 

metabolism has constantly been studied to help us understand how to prevent 

and treat chronic or acute diseases such as myocardial infarction, diabetes, and 

obesity.  

Muscle cells are critical players in the whole-body glucose metabolism. 

This is because muscle makes up to one third of human body mass.11 Skeletal 
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muscle is one important type of muscle, which contributes significantly to glucose 

homeostasis. Skeletal muscle can either store glucose or use it directly to 

generate energy under different metabolic conditions after the uptake of 

glucose.12Skeletal muscle is the major place for glucose utilization.12 It uses a 

significant amount of glucose for energy production in physical activities. In 

addition, it also converts excessive glucose into glycogen for the use as a quick 

source of energy intracellularly.12 Therefore, understanding the muscle glucose 

metabolism is relevant to the intervention of the development of metabolic 

diseases.   

In healthy subjects, the blood glucose level is controlled in a narrow range 

from 4.0 to 5.9 mmol/L.13 This is achieved through the balance of glucose uptake 

and usage. As an aldose, glucose could not enter cells freely without the help of 

carrier proteins. One type of these proteins is known as glucose transporters 

(GLUTs).14 Glucose uptake is mediated by GLUTs in cells including skeletal 

muscle cells. GLUT1, GLUT4, and GLUT5 are 3 isoforms of GLUTs that mediate 

the uptake of glucose in skeletal muscle.14 Insulin can stimulate the uptake of 

glucose in skeletal muscle in the postprandial state.12 

Insulin is important for the transport and disposal of glucose especially in 

peripheral tissue such as muscle and adipose tissues.15 The sensitivity of muscle 

in response to insulin is important in maintaining normal glucose level.  Insulin 

was first found to be able to stimulate the movement of a GLUT from intracellular 

poor to the plasma membrane in 1980.16 It has been thought that the main GLUT 

mediating insulin-stimulated glucose uptake is GLUT4.17 GLUT4 locates 

specifically in cells of the striated muscle and adipose tissues.15 GLUT4 moves 

rapidly from the intracellular storage locations to the plasma membrane when 

cells are stimulated by insulin.17 Once present on the cell membrane, GLUT4 

begins to mediate the uptake of glucose into the skeletal muscle cells. Insulin-

mediated translocation of GLUT4 has been considered as a critical step for the 

glucose uptake in skeletal muscle.17 
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The insulin-induced GLUT4 translocation also exists in adipocytes.18 

Adipose tissues are not only a storage place for fat but also an endocrine organ 

for the regulation of lipid and glucose homeostasis.18 They play critical roles in 

the maintenance of body health. The major storage form of fat in adipocytes is 

triglyceride, which is a glycerol backbone esterified to three fatty acids (FAs).18 

FAs can be derived from dietary fat or synthesized de novo from proteins or 

carbohydrates in the body.18 Adipocytes include white adipocytes19 and brown 

adipocytes.20 White adipocytes are responsible for the storage of fat19, whereas 

brown adipocytes are responsible for the generation of heat to maintain the body 

temperature.20 Enzymes in adipocytes catalyze the hydrolysis of triglycerides for 

the generation of free FA and glycerol in the body. Adipocytes are not a simple 

site for fat storage; they secrete important endocrine hormones such as leptin 

and adiponectin to regulate metabolism in the whole body.19 Both leptin and 

adiponectin regulate metabolism to control the body mass in healthy subjects.19 

However, the regulatory functions of leptin and adiponectin towards body mass 

begin to have problems when the body mass of human subjects increases.20 

Due to the economic development and improvement of education, people 

begin to pay more attention to the prevalence of overweight or obesity in America 

and other parts of the world.21 Increased food consumption and decreased 

exercise are the common causes of overweight or obesity.21 Individuals in a 

population categorized as underweight, normal weight, overweight or obese 

group based on body mass index (BMI).22BMI is determined as the body mass 

(kg) divided by the square of the body height (meters). kg/m2 is the generally unit 

of BMI. BMI categories22 are (1) underweight: <18.5, (2) normal weight: 18.5-25, 

(3) overweight: 25-30, (4) obese: >30. Obesity is a chronic metabolic disease 

which is related to cardiovascular disease, diabetes or cancers. As a result, 

people generally hold negative attitudes when they consider the role of 

adipocytes in obesity. 

Diabetes mellitus is another one common metabolic disease, which is 

defined by the elevation of blood glucose level due to alteration of metabolism.23 
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Insulin plays key roles in regulating glucose homeostasis. Insufficient insulin 

secretion or low sensitivity of insulin stimulation of the body can lead to 

diabetes.23Patients with diabetes can be divided into two types: insulin-

dependent type 1 diabetes (T1DM) and insulin independent type 2 diabetes 

(T2DM). Diabetes has become prevalent in both developed and developing 

countries. Take America as an example of the developed countries, the total 

number of people diagnosed with diabetes has increased dramatically for the 

past 40 years. The number of patients with diabetes is expected to increase 50% 

by 2030.23 Take China as an example of the developing countries, based on the 

current trend, the number of patients with diabetes is expected to nearly double 

by 2030.23 The rates of blindness, renal disease or cardiovascular disease 

increase in those people who are diagnosed with diabetes. Glycemic control is a 

term used to describe the ability of maintaining blood glucose levels under 

normal ranges. The impaired glycemic control of patients with diabetes further 

harms the body health of patients.23 Although more and more people begin to 

focus on how to control the prevalence of diabetes, the roles of micronutrients in 

diabetes have not been well studied. 

Nutrients are necessary for the growth and development of organisms. 

Macronutrients, such as carbohydrate, lipids, and proteins, provide the basic 

energy need for maintaining the normal metabolic state in the body. 

Micronutrients act as cofactors in metabolic pathways in the body. Vitamin A (VA) 

is a family of compounds which have the biological activity of retinol. VA plays a 

key role in the development of animals.24 Retinoic acid (RA) is an metabolite of 

retinol.  The major functions of VA are mediated by RA. First, VA is necessary for 

the development of nervous system.24 Second, VA can also influence the 

differentiation and proliferation of cells. For example, the differentiation of 

epithelial cells can be influenced by VA status.24 Third, the visual cycle needs 

retinal, an oxidized production of retinol.24  

One key role of RA is to regulate gene expression. RA can bind to nuclear 

receptors in the cell to regulate gene expression. Both retinoic acid receptors 
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(RARs) and retinoid X receptors (RXRs) can be activated by RA. RAR/RXR or 

RXR/RXR heterodimers can bind to RA response element (RARE) located in the 

promoters of target genes. Then, the gene expression can be regulated following 

ligand binding. Recently, it has been shown that chicken ovalbumin upstream 

promoter-transcription factor II (COUP-TF II) and hepatocyte nuclear factor 4α 

(HNF4α) can also influence the expression of RA-regulated gene recently.25 

In summary, glucose metabolism are important in the regulation of 

metabolic homeostasis. Muscle and adipose tissues are critical to the regulation 

of glucose metabolism.  The roles of VA and its signaling pathways in the 

regulation of muscle and adipocyte glucose uptake have not been revealed 

completely. It is important to understand RA function because RA signals have 

effects on both energy metabolism and glucose metabolism. The aim of this 

thesis is to understand how RA can influence the glucose metabolism in both 

skeletal muscle cells and adipocytes. The data shown in this thesis may help to 

learn how to control the prevalence of diabetes and obesity worldwide. 
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CHAPTER TWO 

REVIEW OF THE LITERATURE ON VITAMIN A, INSULIN 

SIGNALING, MUSCLE METABOLISM AND 3T3-L1 METABOLISM 

2.1 Vitamin A 
2.1.1 Discovery of Vitamin A 

Nutrients are needed for the growth and development of humans and 

animals. For our energy need, macronutrients, carbohydrate, protein, and lipids, 

are metabolized to generate ATP. Micronutrients are vitamins and minerals that 

are used as cofactors to regulate biomedical pathways and building blocks to 

sustain the body health, respectively. The human body only needs small or trace 

amount of micronutrients compared with a large amount of macronutrients. VA is 

known as a micronutrient. 

In 1881, G. Lunin showed that mice could not live when fed pure casein, 

fat, sucrose, minerals and water. Interestingly, he found when fed whole dried 

milk, mice grew well.26In 1906, F. C. Hopkins hypothesized that “minimal 

qualitative factors” in the diet were essential for growth and survival.27McCollum 

showed that the existence of an important fat-soluble factor in milk was 

necessary for the growth and development of rats. He successfully proved that 

an ether extract of alfalfa leaves or liver could improve growth of rats.28This 

unknown fat-soluble nutrient was termed as “fat-soluble factor A”. Osborne and 

Mendel further isolated and identified the fat-soluble factor. They successfully 

subtracted the yellow oil from butter fat.29However, they failed to subtract active 

substance from lard or olive oil.30 P. W. Boutwell hypothesized that yellow 

pigment (β-carotene) of fat-soluble factor A can be converted to the active form 

(VA or retinol).31 This hypothesis was proved by T. Moore in 1930.32 In brief, VA 

is one important micronutrient which deserve to be understood. 
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2.1.2 Structure and Physical Characteristics of VA   
Retinol is the major form of VA which possesses a hydroxyl group at C-

15.24  Retinoids are a big family of compounds that have a 20-carbon structure 

with a β-ionone ring and an isoprenoid side chain containing different chemical 

groups at the acyclic terminus.24 Retinol can be oxidized to retinal which 

possesses an aldehyde group (-CHO) at the acyclic terminus. Retinol and retinal 

can be interconverted. RA can be generated in the body by two oxidation steps in 

a sequence which convert retinol to retinal, and then,  to RA. Once RA is 

produced, it cannot be reduced back to retinal. RA possess a carboxylic acid 

group (-COOH).24VA possess double bonds which are not stable. VA is soluble in 

ethanol but almost insoluble in water. It can be freely solubilized in organic 

solvents such as fats and oils. The side chain bonds of retinoids and carotenoids 

can go through slow conversion between cis-form and trans-form. Light, heat, 

and iodine can stimulate this conversion. Although retinol has a variety of 

isomers, carotenoids present almost exclusive in the all-trans form in both plants 

and animals. Most forms of VA are crystallizable but with low melting points. For 

example, the melting point of retinol is between 62-64 . VA and provitamin A 

carotenoids are very sensitive to oxygen, light, and heat. It is important to 

exclude air and add antioxidant when isolating VA and provitamin A 

carotenoids.24 

2.1.3 VA Sources 
VA is an essential fat-soluble micronutrient because animals cannot 

synthesize it. For humans and animals, it should be taken from foods. Dietary VA 

exists in two forms: provitamin A carotenoids and preformed VA.24 Provitamin A 

carotenoids are acquired from plant sources, while preformed VA retinyl esters 

(REs) and retinol are derived from animal products.24 The main sources of 

provitamin A carotenoids are fruit and vegetables. Lots of orange, dark green 

colored fruits and vegetables are rich in carotenoids. Representative vegetables 

and fruits of provitamin A include carrots, pumpkin, winter squash, and apricots, 

etc. Carotene has 3 isomers: α-carotene, β-carotene, and γ-carotene.24 β-
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carotene is one type of carotene which can be converted to functional VA in the 

body. Cryptoxanthins is also one type of carotene which only possess half of the 

biological activity of β-carotene.24 Preformed VA is commonly provided by foods 

of animal products such as liver, dairy products, and fish.24 The best way to get 

enough VA is to ingest a broad type of food. 

It is important for us to ingest suitable amount of VA for our body health. 

The international unit (IU) was used to measure VA activities in the past. VA has 

different forms which make it complex to be measured in diet. People try to use 

retinol as a common standard form of VA when measuring total amount of VA 

content in diets. The amount of every types of VA needs to be transferred to the 

amount of retinol. In brief, retinol activity equivalent (RAE) was set up to measure 

amounts of VA sources. One RAE is equal to 1 microgram (mcg) of retinol. Take 

carotene as an example, 2 mcg of β-carotene in diet or supplement is equal to 1 

RAE. The Recommended Dietary Allowances (RDAs) for VA is 900 mcg RAE for 

male and 700 mcg RAE for female between age 19 to 50 according to the 

Institute of Medicine (IOM) in America.33 

2.1.4 VA Uptake and Secretion 
Different forms of VA in diets are absorbed. In the small intestine, 

enterocytes can uptake carotenoids via passive diffusion. The provitamin A 

carotenoids taken into cells are cleaved into retinal via two mechanisms: central 

cleavage and eccentric cleavage. Both mechanisms work together to convert 

carotene into retinal, which is reduced into retinol. In Figure 1, in the central 

cleavage mechanism, 15,15’ carbon double bond can be cleaved by β, β-

carotene-15, 15’-monooxygenase to generate two retinals.34 In the eccentric 

cleavage mechanism, β, β- carotene-9’, 10’-dioxygenase catalyze carotenoids to 

generate two molecules of β-apocarotenals with different molecular weights.34 

Intestinal retinal reductase works later to reduce retinal to retinol.34Retinol and 

RE are absorbed differently. RE can be hydrolyzed  to retinol and FAs by 

enzyme in intestinal lumen, which are then absorbed by the enterocytes. Two 

enzymes have been identified in the hydrolysis process: intestinal brush border  
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Figure 1 VA Absorption, secretion and portal circulation in body.The animal source of 

retinoids is RE. The plant sources of retinoids are carotenoids. Both RE and carotenoids can be 

converted to retinol in intestine. Retinol is esterified to RE by enzymes in enterocytes of small 

intestine. RE can be packed in chylomicrons which can be later secreted to the lymph circulation 

to enter the general circulation. Chylomicrons can be converted to chylomicrons remnants after 

several modifications of lipid components and lipoproteins. Liver parenchymal cells play a key 

role in VA storage. Chylomicrons remnants are taken by liver parenchymal cells. RE can be 

hydrolyzed to generate retinol which can be transported to endoplasmic reticulum to bind with 

retinol-binding protein (RBP) in parenchymal cells. ROL- RBP later can be secreted to the blood 

vessel or taken by the perisinusoidal stellate cells. In stellate cells, it can be stored in the form of 

RE and release in the form of ROL- RBP complex to help maintain the homeostasis of plasma 

ROL level between 1-2uM. 
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enzyme phospholipase B and pancreatic triglyceride lipase. Then retinol was 

taken up by the enterocytes.34 

In the small intestine, after retinol is taken by the enterocytes, it can bind 

to retinol-binding protein type II (CRBP-II). This protein helps to solubilize retinol 

and to prevent its degradation. Long chain FAs and most retinol re-esterified later 

to generate RE. This process is catalyzed by retinol acyl transferase (LRAT) in 

enterocytes. Newly made RE can be incorporated in chylomicrons which carry 

different VA molecules such as carotenoids, RE, retinol, etc. They are packed 

together with triacylglycerol and phospholipids. Those chylomicrons are secreted 

in the lymph duct to enter circulation process eventually.34(Figure 1) 

2.1.5 VA transport and storage 

After chylomicrons are secreted in the lymph system, they eventually enter 

the general circulation system in the body. Hydrolysis of triacylglycerol and 

exchange of apolipoproteins help to generate chylomicron remnants.  

Chylomicron remnants with RE arrive at the liver via blood capillary. Although 

tissues can extract most lipids and some carotenoids from circulating 

chylomicrons, most RE are derived from the chylomicron remnants. Liver 

parenchymal cells can basically uptake chylomicron remnants. Another type of 

liver cell which is important for VA metabolism and storage is perisinusoidal 

stellate cell. Parenchymal cells are responsible for the clearance of chylomicron 

remnants with RE. RE is hydrolyzed in parenchymal cells again to generate free 

retinol and FA. If retinol is not needed immediately in the cells, it can be re-

esterified in the perisinusoidal stellate cells and retained in it. Most retinol in 

perisinusoidal stellate cells present in the form of RE packaged together with lipid 

droplets. The storage mechanism of VA in the liver helps to maintain normal 

plasma retinol level which is at1-2 uM. Stored RE can be hydrolyzed again by 

hepatocytes. The released retinol binds with retinol binding protein 4 (RBP4) to 

be released. RBP4 is mainly located in the ER of hepatocytes. RBP4 possesses 

the ability to bind with free retinol to form a stable RBP-retinol complex. RBP-
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retinol complex can translocate to Golgi apparatus before the complex is 

secreted in plasma.35  

After the RBP-retinol complex is secreted into the plasma, it can further 

bind with transthyretin. Transthyretin is a larger protein synthesized and secreted 

by hepatocytes. It interacts with thyroid hormone T4 and mediates T4 transports 

in the blood. The larger transthyretin-T4-RBP-retinol complex can be recycled by 

the kidney, a process that prevents the loss of retinol in the urine. This complex 

circulates in the blood to deliver the lipophilic retinol to extrahepatic cells. The 

complex can release transthyretin-T4 to form RBP-retinol complex again in 

plasma. In the extrahepatic cells, RBP4 receptors on cell membrane can bind 

with RBP-retinol complex. As a result, retinol can be taken by the target cells.35 

2.1.6 Generation of Retinal and Retinoid Acid in Nonvisual Cells 
Retinol can be taken directly from plasma and converted to the active 

metabolites to exhibit multiple physiology functions inside target cells. In addition 

to the retinol from the bloods, cells can also generate active retinoid metabolites 

from those VA sources stored directly inside them or in the neighboring cells. 

All-trans RA is the main active retinoid metabolite which is a ligand for the 

activation of a transcriptional factor. RA can be generated from retinol in two 

oxidation steps. all-trans retinol is converted to all-trans retinal first. This step is a 

rate limit step.35 In the second step, all-trans retinal can be further oxidized to all-

trans RA. Cytosolic medium-chain alcohol dehydrogenases (ADH) such as 

ADH1, ADH3 and ADH4 play a key role in the first oxidation step. ADH4 is the 

most efficient one. However, it seems that ADHs cannot catalyze the first 

oxidation step if retinol is bound to CRBP-I.24Membrane-bound short-chain 

dehydrogenase/ reductase (SDR) is also important for the first oxidation step. 

SDR family of microsomal enzymes such as RDH1, RDH5 and RDH11 oxidize 

all-trans retinol to all-trans retinal.36 SDR can use all-trans retinol even it is bound 

to CRBP-I.29Retinal dehydrogenases (RALDHs) are responsible for the second 

oxidation step. For example, RALDH2 oxidizes all-trans retinal to all-trans RA in 

several cell types during embryonic development.24 
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2.1.7 VA Assessment, Deficiency and Toxicity 
The standard of VA level in the human body is not easy to be established. 

There are lots of potential influencing factors such as culture, geology, and 

individuals.37 To assess different VA status in the body, plasma retinol and blood 

RBP4 levels are widely used as indicators of VA status. Currently, VA sufficiency 

is defined as a plasma retinol level > 1.05 umol/L. VA deficiency is defined at 

retinol level < 0.7 umol/L. Mass spectrometry (MS) is used for testing plasma 

retinol levels in the research and clinical labs nowadays. The relative dose 

response (RDR) test is another method to determine the VA status in the human 

body. In the first step, intravenous serum retinol concentration is measured. Next, 

1000 mcg of retinyl palmitate is injected intravenously. Five hours later, 

intravenous blood retinol level is measured again. When liver VA content is less 

than 20 mcg/g liver, RDR values found are greater than 20%. When liver vitamin 

A content is greater than 20 mcg/g liver, RDR values found are less than 10%.37 

Different VA statuses have considerable influence on the body health of 

human being.  Both VA deficiency and VA toxicity (known as hypervitaminosis A) 

have negative effects on lots of physiology processes in the body. VA deficiency 

is not common in developed countries because people always ingest enough 

amount of meat products. However, VA deficiency is prevalence in developing 

countries. Take the data of children as an example, over one million children are 

affected by VA deficiency worldwide.38 Low frequency and an insufficient amount 

of diary and meat products consumption in meals can be used to explain why VA 

deficiency is prevalence in developing countries.38VA toxicity is commonly found 

in people with liver dysfunction typically. Other probable reasons leading to VA 

toxicity include drug effect, and malnutrition.39 Absorption of excessive amount of 

preformed VA can lead to VA toxicity, which is not the case of over consumption 

of provitamin A carotenoids.39 
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2.2 Retinoic Acid Signaling in the Regulation of Metabolism 
2.2.1 Overview 

Obesity and T2DM are two prevalent chronic metabolic diseases 

worldwide. These diseases are associated with abnormal glucose and lipid 

metabolism. This is in part attributed to the alteration of the expression levels of 

genes in metabolic active tissues. VA metabolism is possible to influence the 

macronutrient metabolism.24RA can regulate glucose and lipid metabolism.25This 

is through the control of gene expressions, which includes those genes for the 

glucose and lipid metabolism. The classic RA signaling system is mediated 

through the binding of RA to transcription factors such as RARs and RXRs in the 

nucleus, two family members of nuclear receptors.41Additional nuclear receptors 

have been shown to mediate RA signaling.41HNF4α and COUP-TFII have been 

thought to act as a nuclear receptor that can mediate RA signals to regulate gene 

expression. RXRs, COUPTFII and others may play  roles in mediating RA signals 

in metabolic active cells. We believe that RA signaling and these transcription 

factors may influence cellular metabolism which is associated with obesity and 

T2DM.41  
2.2.2 Nuclear Receptor 

Lipophilic molecules like RA regulate cell differentiation, gene expression 

and general physiology processes through the modulation of the activities of 

nuclear receptors. Nuclear receptors interact with DNA sequences in the 

regulatory regions of their target genes. The expression levels of target gene can 

be regulated by nuclear receptors. Ligands bind to the nuclear receptors and 

cause the conformation changes.  The allosteric change results in recruitments of 

other transcription factors for suppression or expression of the target genes. A 

typical nuclear receptor protein is shown in Figure 2. The DBD allows the 

receptors to bind to response elements on DNA. The conformation of 

transcriptional activation domain can be changed after binding with ligands. The 

LBD can bind to different ligands such as FAs, RA and steroids. Additionally, 

another term called nuclear orphan receptor is used specifically to describe those  
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Figure 2 Common Structure of Nuclear Receptor. A typical nuclear receptor molecule 

commonly contains five domains: N-terminal domain, DBD domain, hinge region, LBD domain 

and C-terminal domain. 
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nuclear receptors whose physiological ligands have not been identified. Although 

the ligands of nuclear orphan receptors are not identified, they still interact with 

specific elements on DNA. As a result, nuclear orphan receptors are still able to 

up- or down-regulate target gene expression.42 

RA can bind to RARs or/and RXRs nuclear receptors to form a complex 

with changes of conformations. This RA and nuclear receptor complex are 

associated with the specific DNA sequence called RARE. This binding complex 

also interacts with other proteins in the genes’ promoters to regulate gene 

expression. The cloning and identification nuclear receptors mediating RA 

signaling systems have helped to understand RA signaling pathways.42  

2.2.3 Retinoid X Receptors 

Retinoids are important for cell growth, cell differentiation and nervous 

system development, etc. Complex signal pathways help to explain the diverse 

regulatory functions of retinoids. The first identified class of nuclear hormone 

receptors is RARs. RAR has three isoforms, RARα, RARβ and RARγ. RARs can 

bind with all-trans RA with high affinity. They share high level of structure 

conservations.43  

RXRs possess different basic structure and specific ligands compared 

with RARs. RXRs cannot bind with all-trans RA. 9-cis RA is identified to be the 

first ligand of RXR.44 The identification of RXR and its ligand (9-cis-RA) facilitate 

the development of nuclear receptor area. First, it encourages researchers to 

identify the ligands of orphan nuclear receptor. Second, it encourages people to 

identify the nuclear receptors which can form heterodimers with RXRs.45 For 

example, Peroxisome proliferator-activated receptor (PPAR) was proved to be 

the first class of orphan nuclear which can heterodimerize with RXR. RXRs can 

not only bind with RARs to form RAR/RXR heterodimers, but also bind with 

RXRs or other nuclear receptors to form varieties of homodimers or 

heterodimers. They can regulate transcription of target genes after binding to 

RARE which located in the promoters of target genes.45 
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RXRs can regulate the expression of genes involved in VA metabolism 

because RXRs are expressed in a variety of metabolically active organs such as 

small intestine, liver, and kidney.46 For example, CRBPII gene is a potential 

target gene of RXRs. RXRs are also important for energy metabolism in mice. 

For example, the expression of carnitine palmitoyl transferase I gene increased 

in diabetic rat treated with LG100268 which is an RXR-specific agonist.47 

Moreover, RXR-selective agonists can induce adipose differentiation in 

preadipocytes. Mice with specific deletion of RXRα in hepatocytes show a lower 

amount of food intake and higher body weight with increased glucose tolerance 

than their controls.42 RXRα is also proved to be related with lipogenesis. For 

example, in adipocytes, deletion of RXRα results in the resistant to obesity of 

mice.42 

2.2.4 The Chicken Ovalbumin Upstream Promoter-Transcription Factors 
COUPTF II is one transcriptional factor that can influence the expression 

of RA-regulated gene.25DNA sequences, regulatory factors and RNA polymerase 

can interact with each other to modulate gene expression at transcription level. 

Both recombinant DNA and gene transfer techniques help to characterize the 

promoters for RNA polymerase II-transcribed gene. Both cis-acting elements in 

DNA and the regions located further upstream in DNA are necessary to initiate 

DNA transcription. Experiments were conducted to test initiation efficiency of 

DNA transcription. Take the ovalbumin gene as an example, the TATA box is 

one of the cis-acting DNA elements which is located between -24 to -32 base 

pairs from the initiation site of the transcription. The efficiency and accuracy of 

DNA transcription initiation is supported by the TATA box.  CAAT box which is a 

specific upstream sequence from TATA box is also necessary for initiating 

transcription of genes with high efficiency. CAAT box contains direct repeat of 

GTCAAA sequence which is located around 80 base pairs away from the cap 

site. The cap site located on a DNA template where transcription begins.  The 

result of 5' deletion mapping method first proved the existence of a distal DNA 

element in the promoter. Transcription competition assays were performed to test 
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the existence of a potential transcription factor that can interact with the promoter 

element. As a result, it is proved that CAAT box was an important DNA sequence 

which can bind with a transcription factor. To further identify a specific protein 

which can bind to CAAT box in ovalbumin gene, exonuclease footprinting 

experiments were conducted. In conclusion, a specific type of transcription 

factors called COUP-TFs were identified. COUP-TFs can bind with the direct 

repeat of GTCAAA sequence in the upstream promoter region of the ovalbumin 

gene.48 

COUP-TFs include COUP-TFI, COUP-TFII and COUP-TFIII.25 COUP-TFs 

are still orphan nuclear receptors, which have been studies extensively. All of 

them belong to the NR2F subfamily of nuclear receptors.25 COUP-TFII plays a 

key role in embryonic development and can influence the reproductive function of 

mice. During embryonic development, COUP-TFII gene (Nr2f2) is widely 

expressed in tissues and organs of mice. COUP-TFII homozygous knockout 

(Nr2f2−/−) mice had defection in heart development.49COUP-TFII can also 

regulate insulin synthesis and secretion in pancreatic β-cells. Higher amount of 

insulin is required to keep the stable of glucose level for those people with low 

insulin sensitivity. In general, low insulin sensitivity indicate the abnormal 

metabolism of glucose in body. Impaired insulin sensitivity, abnormal insulin 

secretion and insulin resistance were found in mice specifically deleted of Nr2f2 

in pancreatic β-cells.50 

2.3 Insulin Signaling and Glucose Transporters 
2.3.1 Discover of Insulin 

The discovery of insulin led to its use for the treatment of diabetes 

mellitus. In 1893, the link between pancreas (an organ) and diabetes (a 

metabolic disease) was established through the research work by Oskar 

Minkowski and Joseph von Mering.51 In the beginning of the first two decades of 

the twentieth century, people failed to extract functional substance from pancreas 

for the treatment of diabetes. This special substance was believed to be able to 

regulate blood glucose level in the body. Frederick G. Banting initiated attempts 
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to extract components from dog pancreas to test its ability to control the blood 

glucose level in diabetic dogs.52Banting and his team members successfully 

extracted and purified insulin for the treatment of patients with diabetes and were 

awarded the Nobel Prize.53 The studies of insulin and its action have led many 

great discoveries and breakthrough in biomedical sciences.  For example, the 

determination of insulin amino acid sequence led to the development of method 

for protein sequencing by Frederick Sanger.53 

2.3.2 Insulin Synthesis 
In pancreatic β-cells, insulin is synthesized as preproinsulin which 

contains 110 amino acids. Preproinsulin is processed and secreted as mature 

insulin with the C-peptide into the blood circulation. The secreted insulin exists as 

a monomer to regulate metabolism through the binding to its receptor. It is stored 

in the form of hexamers in the secretory granules of pancreatic β-cells. Monomer 

form of insulin contains one A and one B chain. They are linked together by three 

disulfide bonds. Two disulfide bonds link A chain with B chain, the other one is 

located within A chain. For the secondary structure, A chain is made up of two 

antiparallel α-helices while B chain is made up of both α-helices and β-sheets.54 

In pancreatic β-cells, preproinsulin is first translated from mRNA 

transcribed from insulin gene. Preproinsulin contains a specific N-terminal signal 

peptide. Preproinsulin can later translocate from the rough endoplasmic reticulum 

(RER) to the lumen. N-terminal signal peptide is cleaved to produce proinsulin in 

the lumen of RER. Cleavage leads to the formation of disulfide bonds in 

proinsulin and its folding. In trans-Golgi apparatus, proinsulin is further cleaved to 

produce the active mature insulin and the C-peptide. This process is catalyzed by 

cellular endopeptidases prohormone convertases and the exoprotease 

carboxypeptidase E. As a result, mature insulin only contains A chain and B 

chain. The mature insulin and C-peptide are packaged inside secretory 

granules.54 
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2.3.3 Insulin Secretion 
In response to the ingestion of nutrients, insulin is released to control the 

metabolic homeostasis. Glucose is the major stimulus of insulin secretion. 

Digestion of starch, the main dietary component, results in absorption of glucose 

and leads to the rise of blood glucose level. Maximal Velocity (Vmax) and 

Michaelis constant (Km) are the two factors which help to explain the function of 

GLUTs.55 Vmax is termed to describe the rate of catalyze reaction when 

substrates fill up all the activity sites of GLUTs. Km is the concentration of 

glucose at half of the Vmax. Glucose metabolism is needed for glucose-

stimulated insulin secretion. Glucokinase, also known as hexokinase D, is also a 

high Km enzyme and is a rate-limiting step for glucose-stimulated insulin 

secretion.55 Comparing with other type of hexokinase, hexokinase possesses 

lower affinity for glucose. The Km of hexokinase is 6 mmol/L. The normal blood 

glucose range is between 4 mmol/L to 10 mmol/L. Moreover, the function of 

glucokinase cannot be suppressed by-products of this reaction, glucose 6-

phosphate. As a result, glucokinase only works at high glucose level to start 

glycolysis.55 The high Km values of GLUTs and hexokinase D in pancreatic β-

cells ensure that insulin secretion only occurs when glucose concentration is 

high. GLUT2 is a high Km glucose transporter expressed in pancreatic β-cells. 

This allows that glucose only enters pancreatic β-cells when blood glucose level 

is high. 

The end product of glycolysis is pyruvate, which is further converted into 

acetyl CoA in mitochondria. In the tricarboxylic acid cycle, acetyl CoA is oxidized 

to generate ATP in the mitochondria of pancreatic β-cells. This pathway can 

couple with the ATP-sensitive potassium channel-dependent pathway to 

stimulate insulin secretion. The oxidation of pyruvate can lead to the increase of 

ATP/ADP ratio. The ATP-sensitive potassium channel will be closed because of 

the increase of ATP/ADP ratio. Then potassium ions (K+) is prevented from 

leaving the cell. The accumulation of K+ can lead to the depolarization of the cell 

membrane. Then voltage-sensitive calcium (Ca2+) ions channels open because 
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of the accumulation of K+. When the concentration of Ca2+ accumulates to a high 

level in pancreatic β-cells, insulin can be released.56 

2.3.4 Insulin Signal Transduction 
Insulin initiates its physiological actions through the binding to insulin 

receptor on cell surface. Insulin receptor contains α-subunits and β-subunits, 

which are linked by disulfide bonds. When insulin binds with the α-subunits, two 

β-subunits come close to each other. The β-subunit of insulin receptor is a 

tyrosine kinase, which can phosphorylate each other in close proximity. This 

phenomenon is termed as autophosphorylation.56 The phosphorylated β-subunits 

recruit insulin receptor substrates (IRS) and phosphorylate them. Phosphorylated 

IRSs can recruit additional signal transduction components and activate a signal 

cascade which mediates insulin signal transduction.56 

The phosphatidylinositol 3’-kinase(PI3K)-Akt signaling pathway (PI3K/Akt) 

are important in mediating insulin signal.(Figure 3) Serine/threonine kinase 

Akt/PKB is one important enzyme in this pathway. Phosphatidylinositol 3’-kinase 

(PI3K) can convert phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to 

phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3). This is important for insulin 

action. PI3K is made of two subunits: P110 and P85. P110 is a catalytic subunit 

while P85 is the regulatory subunit. PI3K can be activated by both receptors with 

protein tyrosine kinase activity and G protein-coupled receptors (GPCR). 

Pleckstrin homology (PH) domain can mediate the effect of PIP3. Akt is a 

serine/threonine kinase. Production of PI(3,4,5)P3 leads to the activation of Akt. 

Akt includes PH domain, a kinase domain, and regulatory domain. PH domain of 

Akt can interact with PIP3. As a result, the conformation of Akt changes. Thr308 

and Ser473 of Akt are phosphorylated. Phosphatidylinositol-dependent protein 

kinase 1 (PDK1) are important for the activation of Akt. It can phosphorylate 

Thr308 in the kinase domain of Akt which helps to stabilize the conformation of 

Akt. Phosphorylation of residues in C-terminal region is also necessary to fully 

activate Akt.57(Figure 3) 

Insulin can also activate the Ras-Mitogen activated protein kinase (MAPK) 
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Figure 3 Phosphatidylinositol 3’-kinase(PI3K)-Akt signaling pathway (PI3K/Akt). 
Phosphoinositol 3’-kinase (PI3K) converts PI(4,5)P2 to PI(3,4,5)P3. PI3K is made up of two 

subunits: P110 and P85. P110 is the catalytic subunit. P85 is the regulatory subunit. PI3K can be 

activated by either receptors with protein tyrosine kinase activity or G protein-coupled receptors 

(GPCR). Pleckstrin homology(PH) domain mediate the effect of PIP3. PI(3,4,5)P3 by PI3K leads 

to the activation of Akt. PH domain of Akt can interact with PIP3 which leads to the conformation 

of Akt changed. Thr308 and Ser473 are phosphorylated. 
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pathways as well. Ras belongs to the family of GTPases. Ras can bind to 

guanosine triphosphate (GTP) as well as hydrolyze GTP. As a result, GTP/ 

guanosine diphosphate (GDP) exchange rate can be regulated. The Ras–MAPK 

pathway is activated by insulin first. Then growth factor receptor-bound protein 2 

(Grb2) and the guanyl nucleotide-exchange factor Son of Sevenless (SOS) come 

to cognate with IRS proteins, SHC-transforming protein (Shc) and GRB1-

associated-binding protein (Gab1).58 Raf is activated to trigger a pathway in 

which the dual-specificity kinases MEK1 and MEK2 are activated. Dual-specificity 

kinase is a term used to describe a kinase which possesses characteristics of 

both tyrosine kinase and serine/threonine kinase. Dual-specificity kinase MEK1 

activates downstream MAPK such as ERK.58 

2.3.5 Glucose Transporters (GLUTs) 
The concept of glucose transporters appeared in 1948 when it was found 

that glucose could not pass through the cell membrane freely.59 GLUTs are 

membrane proteins. They can mobolize glucose through the cell membrane. 

Based on the molecular cloning results, a total of 14 GLUTs have been identified 

in the human genome. All of them are encoded by the members of soluble carrier 

family 2 (SLC2) gene family. All GLUTs have near 500 amino acid residues 

arranged in a 12 membrane-spanning helical structure. As described in Figure 4, 

there is an N-terminal glycosylation between transmembrane helices 1 and 

transmembrane helices 2.59 

 

 
Figure 4 Structure of glucose transporters. Glucose transporters contain 12 transmembrane 

helices with N-terminal and C-terminal. There is an N-terminal glycosylation between 

transmembrane helices 1 and transmembrane helices 2. 
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GLUT4 is an insulin-stimulated glucose transporter which is encoded by 

SLC2A4 gene in humans.17 Insulin can regulate both the expression of GLUT4 

and the translocation of GLUT4. GLUT4 is one of the most well studied types of 

GLUT. GLUT4 can transport glucose, glucosamine and dehydroascorbic acid 

(DHA) to cross the membrane. GLUT4 is important in glucose metabolism and 

glucose homeostasis. The impairment of GLUT4 regulation is associated with 

chronic diseases, such as obesity and T2DM. In the skeletal muscle, exercise 

helps to improve insulin sensitivity as well as stimulates the express of SLC2A4 

gene at transcription level.60 

In general, the substrate binding site of GLUTs can be identified in amino 

acid residues located on both outside and inside of the cell membrane. The 

transport of glucose by GLUTs is bi-directional. The binding of glucose to GLUTs 

will lead to the conformation change of GLUTs. Glucose can be released on the 

other side of the membrane as a result. In insulin-responsive tissues, insulin can 

stimulate the translocation of GLUT4. As described in Figure 5, GLUT4 is 

distributed major in tubulo-vesicular structures, an intracellular structure. GLUT 4 

can be sequestered to the plasma membrane via exocytosis and recycle back to 

the tubulo-vesicular structures via endocytosis. GLUT4 vesicles arrive on the 

plasma membrane first and then fuse with the membrane. Insulin stimulates the 

exocytosis rate of GLUT4. Exocytosis rate of GLUT4 can be increased by 2.8 

folds when stimulated by insulin. The endocytosis will continue with or without 

insulin. GLUT4 is recycled by clathrin-coated vesicles, which prepares to be 

sorted and sequestered again via exocytosis.60  

2.4 Skeletal Muscle Cells 
2.4.1 Physiology Role of Skeletal Muscle 

In adults, the muscle makes up to nearly the half of the human body mass. 

There are mainly three types of muscle: skeletal muscle, cardiac muscle, and 

smooth muscle. Cardiac muscle is a type of involuntary striated muscle found in 

the heart. Cardiac muscle plays a key role in maintaining the rhythmic 

contractions of the heart.61 Contractions pump the blood from the heart to the  
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Figure 5 Translocation of glucose via GLUT4. GLUT 4 is present in intracellular tubulo-

vesicular structures with no existence of insulin. Exocytosis rate is increased after insulin 

stimulation.  GLUT 4 can be sequestered to the plasma membrane via exocytosis and recycle 

back to the tubulo-vesicular structures via endocytosis. GLUT 4 vesicles arrive in the plasma 

membrane first and then fuse with the membrane. Insulin has considerable influence on the 

exocytosis rate of GLUT 4. Exocytosis rate of GLUT 4 can increase to 2.8 folds when stimulated 

by insulin. The endocytosis will continue with or without insulin. GLUT 4 is recycled by clathrin-

coated vesicles and sorted and sequestered again via exocytosis. 
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rest part of the body. Smooth muscle is an involuntary non-striated muscle which 

is different from skeletal muscle and cardiac muscle. It is found in the walls of an 

internal organ or in the tracts of digestive/reproductive system. Smooth muscle 

contracts automatically with a lower speed compared with striated muscle. 

Skeletal muscle is a voluntary striated muscle which is connected by connective 

tissue. It is the most common type of muscle distributed in the human body.61 

Sarcolemma is a term used to describe the cell membrane of a skeletal 

muscle cell.61 Muscle fibers include myofibrils that are made up of sarcomeres. In 

the cytoplasm, fibers are assembled as a striated pattern contain thick and thin 

filaments that form myofibrils. The thick filaments are mainly composed of the 

protein myosin. The thin filaments are mainly composed of actin, troponin and 

tropomyosin. These proteins and other necessary factors like calcium work 

together to activate cross-bridges, which leads to the contraction of muscle. 

Skeletal muscle plays important roles in lots of physiology functions in the human 

body. The essentiality of skeletal muscle is associated with body movement and 

body gesture maintenance. Additionally, skeletal muscle is important for 

supporting the function of digestive and urinary systems. For example, sphincters 

are made up of skeletal muscle. Sphincters can support swallowing and 

urination. Moreover, skeletal muscle helps to regulate the body temperature. 

Contraction of skeletal muscle can lead to the generation of heat which helps 

body to maintain a constant body temperature.61 
2.4.2 L6 Rat Skeletal Muscle Cells(L6 cells) 

L6 rat skeletal muscle cells (L6 cells) were originally derived from thigh 

tissue of baby rat. It was first isolated and established by David Yaffe in 1965.62 

Primary skeletal muscle cultures were used to establish L6 rat cell line. The 

recipe of culture medium was medium 199(22.5%) and Dulbecco's modified 

Eagle medium (67.5%) containing horse serum (10%) and chick embryo extract 

(1-3%). Cells were kept in humid incubator at 37°C and 10% CO2. Next, several 

passages of myoblasts were conducted to select those cells which can attach to 

the plate. Clonal cells were isolated. As a result, L6 cell line was successfully 
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established.63 In 1970, Yaffe proved that L6 cells can still maintain their 

myoblastic shape and can be differentiated to fuse with multinucleated fibers 

under standard culture conditions.63 

The differentiation of skeletal muscle from myoblasts into myotubes 

completes by birth. Then only the size of muscle fiber can change in adults. It 

was proved that L6 cells present high differentiation rate when the basal medium 

containing high serum level is changed to a medium containing low level of horse 

serum (2%).64 Under some specific conditions when muscle is damaged, muscle 

satellite cells begin to proliferate as myoblasts. Newly formed myoblasts can 

further differentiate and fuse into myotubes. This process is termed as muscle 

regeneration. Muscle regeneration is activated by the inflammatory response 

which is caused by the muscle damage.65 Take the proinflammatory monocytes 

as an example, they can differentiate into proinflammatory macrophages in the 

damaged site. Then proinflammatory macrophages become M1 macrophages 

when muscle is damaged. M1 macrophages can secrete cytokines which can 

activate satellite cells to facilitate the differentiation and fuse of myoblasts into 

myotubes(Figure 6).55 

Several important studies have been done using L6 cells as a research 

model. L6 cells have been used for studying the proliferation and differentiation 

of myogenic cells. In 1989, it was proven that growth factors and hormones could 

influence the proliferation and differentiation of L6 skeletal muscle.66 L6 cells are 

used to study the influence of insulin on glucose utilization. It has been shown 

that insulin treatment for 24 h can lead to up to 10-fold activation of glucose 

transport activity after glucose deprivation.67 In summary, L6 cells are a good 

model for studying the cell proliferation, cell differentiation, and glucose 

metabolism. 

2.4.3 The Role of Skeletal Muscle in Glucose/Glycogen Metabolism. 
Skeletal muscle plays a key role in glucose metabolism. Glucose and fat 

are the basic energy sources of skeletal muscle. During exercise and physical 

activities, glucose uptake is necessary to provide energy for skeletal muscle. 
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Figure 6 Skeletal muscle differentiation and regeneration. When muscle is damaged, muscle 

satellite cells begin to proliferate as myoblasts. Newly made myoblasts can further differentiate 

and fuse into myotubes. This process is termed as muscle regeneration. Muscle regeneration is 

activated by the inflammatory response which is caused by the muscle damage. Take the 

proinflammatory monocytes as an example, they can differentiate into proinflammatory 

macrophages in the damaged site. Then proinflammatory macrophages convert into M1 

macrophages when muscle is damaged. Cytokines can be secreted by M1 macrophages to 

facilitate the differentiation and fuse of myoblasts into myotubes. 
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Glucose uptake is also important for the storage of glycogen in muscle 

afterexercise. Skeletal muscle, liver, and pancreatic β cells cooperate with each 

other to control the blood glucose level in a narrow range from 4.0 to 5.9 mmol/L 

in healthy subjects.13 Any defect in skeletal muscle, liver and pancreatic β-cells 

will lead to some problems in glucose homeostasis in the body. For example, the 

decrease in muscle cell number and impaired function of muscle cells have 

negatively influence on whole body glucose homeostasis in mice.17 

Insulin regulates glucose and glycogen metabolism in the skeletal muscle. 

The sensitivity of muscle in responsive to insulin is important in maintaining 

normal glucose level. Glucose transport is a rate-limiting step in glucose 

metabolism.17 Insulin can stimulate the movement of a GLUT4 from intracellular 

poor to the plasma membrane. GLUT4 locates specifically in cells of the striated 

muscle and adipose tissue. They can move rapidly from the intracellular storage 

locations to the plasma membrane when cells are stimulated by insulin. Once 

present on the cell membrane, GLUT4 begins to mediate the uptake of glucose 

into the skeletal muscle cells. The decreased responsiveness of tissues including 

skeletal muscle to the circulating insulin is termed as insulin resistance. Skeletal 

muscle insulin resistance is prevalent in patients with diabetes. Skeletal muscle 

insulin resistance generally begins in a small part of muscle mass. When skeletal 

muscle resistance develops to a significant percentage of muscle mass, 

disturbance of glucose homeostasis shows up. In T2DM patients, skeletal muscle 

resistance is the key reason to cause glucose homeostasis disturbance. Insulin 

resistance is specifically harmful to the early stage diabetes individuals. At the 

late stage, T2DM diabetic patients typically suffer from decreased insulin 

secretion and insulin resistance.13 

2.5. Adipocytes 
2.5.1 Adipocytes and Adipogenesis  

Adipose tissues are mainly consisted of adipocytes and found under the 

skin, between muscles and surrounding organs. There are two types of adipocyte 

tissues in mammals: white adipose tissue (WAT)19 and brown adipose tissue 
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(BAT).20 WAT is the most common type of adipose tissue. WAT can protect 

organs as well as provide energy under conditions like starvation. Lipolysis is a 

term used to define the triacylglycerol hydrolysis mediated by lipases, a process 

that generates FAs and glycerol. FAs can be oxidized in mitochondria for energy 

production in other tissues. The hydrolysis of triacylglycerol can be activated by 

hormones such as epinephrine, glucagon, etc. WAT is not a simple site for 

energy storage; it exhibits endocrine functions through secreting cytokines such 

as adiponectin, leptin, and resistin.19 These cytokines also called adipokines, 

which play key roles in energy metabolism.19 BAT is another type of adipose 

tissue responsible for heat production due to the presence of abundant 

mitochondria in brown adipocytes. BAT is generally found in new born animals.20 

The portion of BAT decreases with the increase of age in human.20 

Adipogenesis, the growth and differentiation of adipocytes, has become a 

hot topic in recent years. The major health problem related to adipogenesis is 

obesity. There are several conversion stages from fertilized egg to mature 

adipocyte. A shown in Figure 7,  fertilized eggs possess the ability to differentiate 

into different cell types. The stem cells which possess mesodermal origins can 

differentiate to preadipocytes.68 In the late stage of embryonic development in 

human, preadipocytes begin to differentiate into adipocytes.69 On the other hand, 

rat preadipocytes cannot begin to differentiate into adipose tissue until after 

birth.70 

 

 
Figure 7 Differentiation process from a fertilized egg to mature adipocyte. There are several 

conversion stages from fertilized egg to mature adipocyte. Fertilized eggs can differentiate into 

different cell types. The stem cells which possess mesodermal origins can differentiate to 

preadipocytes. Preadipocytes can further differentiate into adipose tissue. 
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Adipose tissues possess key roles in controlling whole-body metabolism. 

The lack of adipose tissue mass leads to the increased circulating concentrations 

of triacylglycerol and FAs in both mice and humans. The presence of adipose 

tissue is necessary for normal secretion of adipokines such as leptin and 

adiponectin.19 Both leptin and adiponectin can enhance insulin sensitivity.19 The 

secretion of appropriate levels of adipokines and storage of lipids contribute to 

the function of adipose tissues in regulating whole body metabolism. Adipocytes 

can synthesize and store triacylglycerol during feeding, and release FAs and 

glycerol from hydrolysis of triacylglycerol during fasting.71 

2.5.2 3T3-L1 CARΔ1 Adipocytes 
3T3-L1 cells have been used as a cell model to study the differentiation 

and physiology of adipocytes. It is a good model to study the transformation of 

preadipocytes into adipocytes.  3T3-L1 cells were isolated from mice embryonic 

cells. They have been used in biological research on adipocyte differentiation. 

3T3 cells are cells that need to be subcultured every 3 days to inoculum 3×105 

cells per well.72Before differentiation, 3T3-L1 cells grow like a fibroblast. These 

cells can be differentiated into mature adipocytes under specific conditions.  3T3-

L1 preadipocytes can be induced to differentiation by a mixture of reagents 

promoting abiogenesis under confluency state. The mixture of insulin, 

glucocorticoid, and fetal bovine serum leads to the high differentiation rate of 

3T3-L1 preadipocytes to adipocytes.73 MDI is an abbreviation to describe the 

mixture of insulin, dexamethasone and methylisobutylxanthine (MIX). 

Dexamethasone (DEX) is a glucocorticoid agonist which can activate the 

pathways for glucocorticoid receptor. Mix is a cAMP-phosphodiesterase inhibitor 

which is can activate the cAMP-dependent protein kinase pathway.73   

Preadipocytes begin to differentiate after the treatment with MDI. 

Preadipocytes under differentiating status go through a postconfluent mitosis 

stage after the induction with MDI for 24 hours.73Postconfluent mitosis plays a 

key role in unwinding DNA. Transcription factors can bind with the regulatory 

response elements in genes which modulate the phenotypes of mature 
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adipocytes as a result.73 Then, cells complete the postconfluent mitosis status to 

enter a stage called growth arrest by day 2.  Growth arrest stage is necessary for 

continuing the differentiation process. Lipogenic enzyme, lipolytic enzymes and 

important proteins begin to be expressed in differentiating cells. Those expressed 

proteins are important for modulating the phenotypes of mature adipocytes. By 

day 5 to day 7, the shape of cells becomes round and lipids begin to accumulate 

in cells.74 

3T3-L1 cells are also used to study growth control and action of oncogenic 

viruses.75 It is important to understand the mechanisms related to adipocyte 

conversion and lipid homeostasis. Analysis of the expression profiles of 

exogenous proteins in 3T3-L1 cells helps to study the proteins functions in 

adipose tissue. Coxsackievirus and adenoviruses are human pathogens. 

Coxsackie B viruses are members of the picornavirus family which are non-

enveloped RNA viruses.75 Adenoviruses can cause infections in respiratory and 

gastrointestinal systems. Adenoviruses are non-enveloped DNA viruses. 
67Recombinent adenovirus has been considered as a useful tool for introduction 

of exogenous genes into cells. However, 3T3-L1 cells cannot be transfected 

effectively by recombinant adenovirus.76 There are generally two methods to 

increase the infection efficiency: modifying the viral particles of adenovirus or 

modifying gene expressions of 3T3-L1 cells. It is relatively convenient to modify 

gene expressions in 3T3-L1 cells. Coxsackie and adenovirus receptor (CAR) can 

bind with a protein of adenovirus to initiate the viral infection process. The 

efficiency of infection or transduction can increase significantly if CAR is 

expressed exogenously in Chinese hamster ovary cells.77 The cytoplasmic tail of 

CAR is not necessary for the transfection of adenovirus. CAR was modified by 

deletion of the cytoplasmic tail, CAR Δ1 construct. CAR Δ1 expression construct 

was transfected into 3T3-L1 cell. 3T3-L1 cells with the expression of CAR Δ1 is 

termed as 3T3-L1 CAR Δ1 cells. The efficiency of transfection of recombinant 

adenovirus in 3T3-L1 CAR Δ1 cells increased significantly comparing with that in 
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parental 3T3-L1 cells while the accumulation of lipids did not change 

significantly.75 

2.6 Conclusion 
Skeletal muscle and adipocytes play key roles in glucose metabolism and 

energy homeostasis. VA and insulin may work together to regulate macronutrient 

metabolism in cells. RA exhibits the major physiological functions of VA. We 

aimed to find the influence of RA and insulin on the GLUT4 expression levels in 

L6 muscle cells and 3T3-L1 CARΔ1 adipocyte. Understanding the mechanism of 

how RA influences macronutrient metabolism will help us to better control 

diabetes and obese. 
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CHAPTER THREE 

RA AND INSULIN INHIBIT THE EXPRESSION OF GLUT4 IN 

DIFFERENTIATED L6 MUSCLE CELLS 

3.1 Introduction 
VA is a group of compounds which exhibit the biological activity of retinol. 

VA is one fat-soluble micronutrient which plays key role in the growth and 

development of animals.24 The major functions of VA are mediated by RA. RA 

regulates many aspects of cell differentiation and proliferation. This is done via 

regulation of the gene expression levels associated with these processes. RA 

signaling pathway is mainly mediated by transcription factors in nuclear receptor 

super family.42  

Skeletal muscle is one important type of muscle, which contributes 

significantly to glucose homeostasis. Depending on the metabolic states, skeletal 

muscle can utilize either glucose or FA as an energy source. It can also store 

glucose as glycogen or oxidizes it directly to generate energy under different 

metabolic conditions after the uptake of glucose.24 Skeletal muscle uses a 

significant amount of glucose for energy production in physical activities. 

Additionally, it also converts excessive glucose into glycogen for the use as a 

quick source of glucose intracellularly.24 Therefore, understanding the muscle 

glucose metabolism is relevant to the intervention of the development of 

metabolic diseases, such as obesity or diabetes. 

L6 muscle cells were established to study the muscle differentiation.62 As 

a muscle cell line, L6 muscle cells have been used as a tool to study cell 

proliferation, cell differentiation, and glucose metabolism. Several important 

studies have been done using L6 cells as a research model. L6 cells have been 

used for studying the proliferation and differentiation of myogenic cells. In 1989, it 

was proven that growth factors and hormones could influence the proliferation 

and differentiation of L6 skeletal muscle.66 L6 cells is a good model to study 
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glucose utilization. It has been shown that a 24-hour insulin treatment can lead to 

up to 10-fold activation of glucose transport activity in differentiated L6 cells after 

glucose deprivation.67 

There are only limited studies focusing on the effect of RA on glucose or 

energy metabolism in L6 cells. RA possesses a key role in skeletal muscle 

differentiation. Based on the studies before, pluripotent embryonic stem cells (ES 

cells) can be cultivated under different conditions which lead to cardiogenesis or 

myogenesis.78 In 1994, Victor Maltsev conducted an experiment to test the 

effects of RA doses on ES cells.78 ES cells were incubated with 10−8 and 10−7 

mole(M) RA.  He found that cardiogenesis was inhibited while myogenesis was 

induced between Day 2 and Day 5. He further observed that transcription of 

skeletal muscle-specific myogenin was induced while transcription of cardiac-

specific α- and β-cardiac myosin heavy chain (MHC) genes were inhibited.78This 

result proved that RA is important in the differentiation process from ES cells to 

skeletal muscle cells. 

Glucose uptake is mediated by GLUTs in muscle cells. The impairment of 

GLUT4 regulation is associated with chronic disease such as obesity and T2DM. 

Insulin is the major stimulus for the increased glucose uptake and usage in 

skeletal muscle after a meal. This process has been thought to be mediated by 

the insulin-induced GLUT4 translocation.17 On the other hand; physical activities 

also promote the translocation of GLUT4. Exercise increased the GLUT4 in 

plasma membrane.79In the skeletal muscle; exercise helps to improve insulin 

sensitivity as well as stimulates the expression of SLC2A4 gene at the 

transcription level.60 Physiological factor like fiber type of muscle can also 

influence the GLUT4 protein level. GLUT4 protein level is higher in red muscle 

fibers than in white muscle fibers.80 Those results proved to us that GLUT4 

protein level is a crucial factor in skeletal muscle glucose metabolism. 

It is important to understand RA function because RA signals affect both 

energy metabolism and glucose metabolism. The hypothesis of this thesis is that 

RA and insulin have a synergistic influence on GLUT4 expression in L6 cells. 
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Here, the GLUT4 expression in L6 cells treated with increasing doses of RA or 

10 nM insulin for 6 days were tested. The effects of RA alone and in combination 

with insulin on GLUT4 expression in L6 rat muscle cells were also tested in Day 

4 and Day 6. Finally, the phosphorylation status of Akt and the expression levels 

of GLUT4 in L6 cells following one-hour treatment with increasing concentrations 

of insulin were checked.  

3.2 Materials and Methods 
3.2.1 Reagents 

 For L6 rat skeletal muscle cell culture and differentiation, Dulbecco's 

Modified Eagle Medium (DMEM) was purchased from Mediatech (Manassas, VA, 

U.S.A.). Fetal bovine serum (FBS) was purchased from Life Technologies (Grand 

Island, NY, U.S.A.). Horse serum (HS) was purchased from Hyclone 

Laboratories (Logan, UT, U.S.A.). Penicillin/Streptomycin(P/S) was purchased 

from Mediatech (Manassas, VA, U.S.A.). To treat cells with insulin and RA, 

insulin and all-trans RA and were purchased from Sigma Aldrich Corporation(St. 

Louis, MO, U.S.A.). The bicinchoninic acid (BCA) protein assay kit was 

purchased from Pierce Biotechnology, Inc (Rockford, IL, U.S.A.) to test the 

protein concentration. Immobilon-PSQ PVDF membrane was purchased from 

EMD Millipore Corp (Billerica, MA, U.S.A.). Non-fat dry milk of Food Club was 

purchased from to a grocery store and was used to block membrane and to 

dissolve the first antibodies (GLUT4, β-Actin, Akt, phospho-Akt, total Akt). Bovine 

serum albumin (BSA) protease-free powder was purchased from Fisher 

BioReagents™ to make the second antibody. For immunoblotting, GLUT4 

antibody (C-terminus) was purchased from EMD Millipore Corp (Billerica, MA, 

U.S.A.). β-Actin (#4970), total Akt (#9272), phospho-Akt (Ser473) antibodies and 

horseradish-conjugated goat anti-rabbit IgG (#7074) secondary antibody were 

purchased from Cell Signaling Technology (Danvers, MA, U.S.A.). ECL Western 

Blotting Substrate was purchased from Pierce Pierce Biotechnology, Inc 

(Rockford, IL, U.S.A.), which was used to visualize the recognized proteins. 
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3.2.2 L6 Rat Skeletal Muscle Cell Culture and Differentiation 
L6 cells were maintained in 60 mm dishes with DMEM with 4.5 g/L 

glucose supplemented with 10% FBS + 1% P/S in the incubator at 37°C, 5% CO2 

and 95% air. The medium was changed to DMEM containing 4.5 g/L glucose 

with 2% HS + 1% P/S to induce differentiation when cells reached near 100% 

confluence.   

For the insulin dosage experiment (one-hour treatment), when cells 

reached near 100% confluence, culture medium was changed to differentiation 

medium (DMEM+ 2% HS + 1% P/S) for 6 days. Differentiation medium was 

changed every 2 days. On Day 6, the cells were divided into five groups to be 

treated with the differentiating media containing increasing concentrations of 

insulin for one hour. The insulin concentrations were: (1) 0 nM, (2) 0.1 nM, (3) 1 

nM, (4) 10 nM and (5) 100 nM insulin. Then cells were lyzed to obtain total 

protein. After indicated treatments, L6 cells in 60 mm dishes were washed once 

with 3 ml PBS and scrapped from the dish into 400 μl of whole-cell lysis buffer. 

The lysates were placed on ice for at least 20 min before they were subjected to 

centrifugation at 12000 x g for 20 min. 

For the RA dosage experiment (4 or 6 days), when cells reached near 

100% confluence, medium was changed to differentiation medium (DMEM+ 2% 

HS + 1% P/S) containing (1) 0 μM RA, (2) 0.3 μM RA, (3) 1 μM RA, (4) 3 μM RA, 

(5) 10 μM RA, (6) 0 μM RA+10nM Insulin, (7) 0.3μM RA+10 nM Insulin, (8) 1 μM 

RA+ 10 nM Insulin, (9) 3 μM RA+ 10 nM Insulin, (10) 10 μM RA+10 nM Insulin. 

Cells were treated for 4 days or 6 days. RA was dissolved in 200 proof ethanol to 

prepare RA stock. The media were changed to fresh media every 2 days. At the 

end of the 4-day or 6-day treatments, cells were lyzed and subjected for further 

analysis by immunoblotting. 

For the long-term RA and insulin experiment (4 or 6 days), when cells 

reached near 100% confluence, medium was changed to differentiation medium 

(DMEM+ 2% HS + 1% P/S) containing (1) 0 nM Insulin/0 μM RA (control group), 

(2) 1μM RA, (3) 10nM Insulin or (4) 1μM RA/10nM Insulin. Cells in each group 
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were incubated in the indicated media for 4 days or 6 days. At the end of the 4-

day or 6-day treatments, cells were lyzed and subjected for further analysis by 

immunoblotting. 

3.2.3 Protein Isolation and Immunoblotting 
Cell dishes were kept on the ice and then culture medium was pumped 

out through aspiration. Cells were washed once ice with 3 ml PBS. Then cells 

were lysed in 400 microliters (μL) lysis buffer per dish. Whole cell lysates were 

scraped into different centrifugation tubes (1.5 ml). Centrifugation tubes with 

whole cell lysates were put on ice for more than 20 minutes. Then whole cell 

lysates were centrifuged at 12,000 x g and 4°C for 15 minutes.  

The protein concentration in the cell lysate supernatant was determined 

with PIERCE BCA protein assay kit (Rockford, IL). This was achieved by first 

mixing reagent A with reagent B (50:1) to make working reagent. Five μL of each 

unknown sample was then pipetted into 495 uL dd H2O in seperate labeled 

tubes. The standard protein stock (2 mg/mL) was diluted to 80, 40, 20, 10, 5 and 

0 ug/uL for making standard curve according to the manufacture’s protocol. In 1 

ml reaction, 500 μL of the working reagent was then added to each sample and 

standard protein sample. 

OD reading at 560 nm was measured using a 96 plate reader (560 nm). A 

standard curve was prepared by plotting the average Blank-corrected 560 nm 

OD readings vs. the concentrations in μg/mL. A formula derived from regression 

was obtained and used to determined the total protein concentraion of each 

sample. 

To make the resolving gel, 5.9 mL ddH2O, 5 mL 30:0.8% w/v 

acrylamide:bisacrylamide,  3.8 mL 1.5M Tris-Cl pH 8.8, 150 μL 10% SDS were 

mixed together and 150 μL ammonium persulfate and 6 μL of TEMED were 

added. To make the stacking gel, 4.1 mL ddH2O, 1 mL 30:0.8% w/v 

acrylamide:bisacrylamide,  750 μL 1.0M Tris-Cl pH 6.8, 60 μL 10% SDS were 

mixed together and 60 μL ammonium persulfate and 6 μL of TEMED were added 

finally. 
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After quantification, 40 μg total cell proteins were separated on 8% SDS-

PAGE gel. Then separated proteins were transferred from gel to Immobilon®-

PSQ PVDF membrane, which was blocked with 5% milk diluted in 1x TBST at 

room temperature for one hour.  The primary antibodies were diluted in TBST 

containing 5% BSA or dry milk according to the manufactures’ instruction. The 

membrane was incubated in the first antibody at 4 °C for overnight. The 

membranes were washed three times with 1x TBST (5 minutes each time) later 

after overnight incubation. Goat anti-rabbit IgG conjugated to horseradish 

peroxidase (second antibody) was diluted in 5% milk or 5% BSA in 1x TBST 

(1:1000). The membrane was incubated in the second antibody for one hour. The 

membrane was washed for another three times with 1x TBST (5 minutes each 

time). Next, ECL Western Blotting Substrate was used to cover the membrane 

for visualization of the protein bands. Konica SRX 101A Film Processor was 

used to develop the film. Quantification analysis was performed on Image J 

software (NIH, Bethesda, Maryland, USA). The density of a protein band was 

calculated by subtracting the background in an area of the same size near it. 

Then, the ratio of the densities of the indicated protein to that of the control 

protein (protein of interest/β-actin) was calculated for quantification. 

3.2.4 Statistical Analysis 
All experiments were repeated for three times. One-way ANOVA with LSD 

post-hoc statistical analysis was conducted using SPSS version 22 statistical 

software (IBM, Armonk, NY, U.S.A.). Data were presented as means ± S.E.M. 

The difference was considered significant when the p-value was less than 0.05. 

3.3 Results 
3.3.1 RA treatment Inhibits the GLUT4 expression in L6 Cells on Day 4 

L6 cells were used here to research the effects of RA doses and insulin on 

the protein expression of GLUT4 in differentiating L6 cells. Figure 8 A shows a 

representative blot of GLUT4 in L6 cells treated with RA doses or 10 nM insulin 

for 4 days. Figure 8 B shows the summarized data of three independent studies.  

As shown in Figure 8 B, GLUT4 expression level on Day 4 in L6 
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RA(uM) 0 0.3 1 3 10 0 0.3 1 3 10 
Insulin(nM) - - - - - 10 10 10 10 10 

 

 

Figure 8 Changes in GLUT4 expression in the medium of L6 cells treated with increasing 

doses of RA and 10 nM insulin on Day 4. A: A representative blot of protein levels of GLUT4, 

and β-actin in L6 cells treated with 2% HS (control), insulin (10 nM), RA (1 uM), and RA + insulin 

for 4 days and 6 days. B: Quantification analysis of GLUT4. Cells were maintained in 60 mm 

dishes and were subjected to differentiation with 2% HS alone (control), 2% HS + insulin (10 nM), 

2% HS + RA (0.3-10 uM), or 2% HS + insulin(10nM) + RA (0.3-10 uM). The medium in each plate 

was replaced every 2 days with its respective treatment condition. On day 4 of treatment, whole 

cell lysate was collected as described in Materials & Methods. The ratio of the densities of GLUT4 

to β-Actin was used to analyse data with control group set as 1. All p-values  0.05, a>b>c>d, 

One-way ANOVA is used to analyse data.(means ± S.E.M (n=3)) 
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control cells (RA 0 μM, insulin 0 nM) is significantly higher than that in other 

groups treated with RA at 0.3,1,3, or 10 uM RA or 10 nM insulin. This result 

proved that RA treatment can inhibit the expression of GLUT4. GLUT4 

expression of Day 4 in L6 cells of the control group is also significantly higher 

than that in the insulin only treatment group (RA 0 μM, insulin 10 nM). This result 

proved to us that insulin can inhibit the expression of GLUT4. GLUT4 expression 

of L6 cells treated with 0.3 μM RA was significantly lower than that of L6 cells 

treated with 0.3 μM RA and10 nM insulin. This result indicates that insulin and 

RA may have synergistic effect on the expression of GLUT4 when the dose of 

RA was 0.3 μM. Its expression in L6 cells treated with 0.3 μM RA was 

significantly different from the insulin only group (RA 0 μM, insulin 10 nM). As a 

result, 10 nM insulin has significant influence on the expression of GLUT4 on 

Day 4. GLUT4 expression of L6 cells on Day 4 treated with 0.3 μM RA was 

significantly higher than those treated with 1 μM RA and 10 nM insulin. GLUT4 

expression of L6 cells treated with 1 μM RA was significantly different from L6 

cells treated with 10 μM RA which also proves to us that different doses of RA 

(1uM and 10uM) have different effects on GLUT4 expression of Day 4. On day 4, 

the GLUT4 expression of L6 cells treated with 1 uM RA were significantly higher 

than those treated with 10 μM RA and 10 nM insulin. This result proved to us that 

insulin (10 nM) and RA (1 μM) synergized to inhibit the expression of GLUT4 in 

L6 cells on Day 4. GLUT4 expression of L6 cells treated with 3 μM RA was 

significantly different from L6 cells treated without RA and insulin (RA 0 μM, 

insulin 10 nM). 

In summary, the results shown in 8 B indicate that RA can dose-

dependently inhibit the expression of GLUT4 in the differentiating L6 cells after 

the treatment for 4 days. Insulin can also inhibit the expression of GLUT4. Insulin 

(10 nM) and RA (1 μM) have synergized to inhibit the expression of GLUT4. 

3.3.2 RA treatment Inhibits the Expression of GLUT4 in L6 Cells on Day 6 
Figure 9 A shows a representative blot of GLUT4 in L6 cells treated with 

increasing concentrations of RA in the absence or presence of 10 nM insulin for  
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RA(uM) 0 0.3 1 3 10 0 0.3 1 3 10 
Insulin(nM) - - - - - 10 10 10 10 10 

 
Figure 9 Changes in GLUT4 expression in the medium of L6 cells treated with increasing 

doses of RA and 10 nM insulin on Day 6. A: A representative blot of protein levels of GLUT4, 

and β-actin in L6 cells treated with 2% HS (control), insulin (10 nM), RA (1 uM), and RA + insulin 

for 6 days. B: Quantification analysis of GLUT4. Cells were maintained in 60 mm dishes and were 

subjected to differentiation with 2% HS alone (control), 2% HS + insulin (10 nM), 2% HS + RA 

(0.3-10 uM), or 2% HS + insulin(10nM) + RA (0.3-10 uM). The medium in each plate was 

replaced every 2 days with its respective treatment condition. On day 6 of treatment, whole cell 

lysate was collected as described in Materials & Methods. The ratio of the densities of GLUT4 to 

β-Actin was calculated to do data analysis with control group set as 1. All p-values  0.05, 

a>b>c>d, One-way ANOVA was used to analyse data( means ± S.E.M (n=3)). 
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6 days. Figure 9 B shows the data from three independent studies.  As shown in 

Figure 9 A, GLUT4 expression level on Day 6 in L6 cells of the control group was 

significantly higher than the other groups treated with RA (0.3 μM,1 μM,3 μM,10 

μM) and/or insulin (10 nM). This result proved that RA can inhibit the expression 

level of GLUT4. GLUT4 expression level in L6 cells of the control group on Day 6 

is also significantly higher than the insulin treatment group (RA 0 μM, insulin 10 

nM). This result proved to us that insulin can inhibit the expression of GLUT4. 

In summary, based on the data shown in Figures 8 A&B and 9 A&B, both 

RA and insulin inhibit the expression levels of GLUT4 in L6 cells after 4 and 6 

days of treatment. The synergy between RA and insulin can be seen at Day 4 

with 1 μM RA. 

3.3.3 Insulin influence the Phosphorylation of Akt in L6 Cells 
To determine whether the insulin treatment leads to changes of insulin 

signal transduction in L6 cells, we measured the phosphorylated Akt (pAkt) at 

serine 473. As shown in Figure 10 A&B, protein levels of pAkt in L6 cells 

following one-hour treatment of 100 nM insulin were significantly higher than pAkt 

expression in L6 cells following one-hour treatment of 10 nM insulin. Protein 

levels of pAkt in L6 cells following one-hour treatment of 10 nM insulin doses 

were significantly higher than pAkt expression in control group (insulin 0 nM). 

This result indicates that insulin treatment for one hour caused phosphorylation 

of Akt in L6 cells. Cells treated with 100 nM insulin had higher pAkt than 10 nM 

insulin. At one hour after the treatment, pAkt protein levels in L6 cells of 0 nM, 

0.1 nM and 1 nM insulin groups were not different. As described in Figure 10 

C&D, protein levels of GLUT4 in L6 cells after one-hour treatment of insulin 

doses were not significantly different from each other.  

In summary, both 10 nM and 100 nM insulin exhibit its function in L6 cells 

following one-hour treatment. However, GLUT4 expression in 10nM and 100 nM 

insulin treatment groups were almost the same with the control group, indicating 

that one-hour insulin treatment will not affect GLUT4 expression in L6 cells on  
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Figure 10 pAkt and GLUT4 protein levels in L6 cells following one-hour treatment of 
insulin doses. Cells were maintained in 60 mm dishes and were subjected to differentiation with 

2% HS for 6 days. Following differentiation, L6 cells were treated with 2% HS (control), insulin (0 

nM, 0.1 nM, 1nM, 10 nM, 100 nM) for 1 hour. Following treatment, whole cell lysate was collected 

as described in Materials & Methods. The ratios of the densities of pAkt to total Akt and GLUT4 to 

β-actin were calculated to do data analysis with control group set as 1. A&C: A representative blot 

of protein levels of pAkt, GLUT4 and β-actin. B&D: Quantification analysis of pAkt and GLUT4.  

All p-values  0.05; a>b>c. One-way ANOVA was used to analyse data(means  S.E.M (n=3)). 
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Day 6 in the current experimental setting. Insulin does not have a significant 

influence on the GLUT4 protein level. 

3.3.4 Insulin and RA Inhibit the Expression of GLUT4 Protein Level 
L6 cells were treated with 1 μRA, 10 nM insulin and their combination for 6 

days again to test the GLUT4 expression. As shown in Figure 11 A&B, GLUT4 

expression on Day 4 in L6 control cells was significantly higher than that in cells 

treated with 1 μM RA or 10 nM insulin. This result proved that RA or insulin alone 

can significantly inhibit the expression of GLUT4 protein level. GLUT4 expression 

on Day 4 in L6 cells treated with 1 μM RA and 10 nM insulin was significantly 

lower than the RA or insulin alone group, demonstrating a synergy between 

them.  In summary, according to the results shown in Figure 11 A&B, in the 4-

days , in the 4-day RA and insulin experiment, we found 1 μM RA and 10 nM  

insulin can inhibit the expression of GLUT4. RA and insulin have a synergistic 

effect to inhibit the expression of GLUT4 at the protein level in L6 cells treated 

with RA and insulin for 4 days. 

As shown in Figure 12 A&B, the GLUT4 protein level in L6 control cells 

after differentiation for 6 days were significantly higher than L6 cells treated with 

1 μM RA, 10 nM insulin, and RA + insulin. This result proved that RA and insulin 

significantly alone inhibit the expression of GLUT4 protein level. 

As described in Figure 12 A&B, the GLUT4 protein level in L6 cells treated 

with 1 μM RA for 6 days was significantly higher than cells treated with 1 μM RA 

and 10 nM insulin. GLUT4 protein level in L6 cells treated with 10 nM insulin for 6 

days were not significantly different from L6 cells treated with 1 uM RA and 10 

nM insulin. 

In summary, according to the results shown in Figure 11 A&B, we found 1 

uM RA and 10 nM insulin can inhibit the expression level of GLUT4 on Day 4. RA 

and insulin do not have a synergy to inhibit the expression of GLUT4 protein level 

on Day 6. 
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RA(uM) - 1 - 1 

Insulin(nM) - - 10 10 

  

 
Figure 11 Decrease of GLUT4 protein levels in L6 cells treated with insulin and RA for 4 
days. A representative blot of protein levels of GLUT4 and β-actin in L6 cells treated with 2% HS 

(control), insulin (10 nM), RA (1 uM), and RA + insulin for 4 days. Cells were maintained in 60 

mm dishes and were subjected to differentiation with 2% HS (control), insulin (10 nM), RA (1 uM), 

and RA + insulin. The medium was replaced every 2 days with its respective treatment condition. 

On day 4 of treatment, whole cell lysate was collected as described in Materials & Methods. B: 

Quantification analysis of GLUT4 and β-actin in L6 cells on Day 4. The ratio of the densities of 

specified proteins to β-actin was calculated to do data analysis with control group set as 1. All p-

values  0.05; One-way ANOVA was used to analyse data. 
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RA(uM) - 1 - 1 

Insulin(nM) - - 10 10 

 
Figure 12 Decreases of GLUT4 protein levels in L6 cells treated with insulin and RA for 6 
days. A representative blot of protein levels of GLUT4 and β-actin in L6 cells treated with 2% HS 

(control), insulin (10 nM), RA (1 uM), and RA + insulin for 6 days. Cells were maintained in 60 

mm dishes and were subjected to differentiation with 2% HS (control), insulin (10 nM), RA (1 uM), 

and RA + insulin. The medium was replaced every 2 days with its respective treatment condition. 

On day 6 of treatment, whole cell lysate was collected as described in Materials & Methods. B: 

Quantification analysis of GLUT4 and β-actin in L6 cells on Day 6. The ratio of the densities of 

specified proteins to β-actin was calculated to do data analysis with control group set as 1. All p-

values  0.05; One-way ANOVA statistical analysis was performed using SPSS software. 
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3.4 Discussion 
The aim of this part of the thesis was to understand how RA can influence 

the glucose metabolism in skeletal muscle cells. In this study, GLUT4 expression 

in L6 cells were tested. Insulin is an important hormone that regulates skeletal 

glucose metabolism. Both the expression of GLUT4 and the translocation of 

GLUT4 can be regulated by insulin. Insulin can stimulate the mobilization of the 

GLUT4. It has been proved that acute insulin treatment via hind limb perfusion or 

in viva injection can increase GLUT4 in plasma membrane fraction but decrease 

GLUT4 in the intracellular membrane fraction.79 Those results suggest that 

GLUT4 protein expression is a crucial factor in skeletal glucose metabolism.  

In this study, insulin can inhibit the expression of the GLUT4 protein in L6 

skeletal muscle cells on Day 4 and 6 as shown in Figure 8 and 9. These results 

indicate that insulin treatment actually can decrease the GLUT4 protein 

expression levels in the differentiated L6 skeletal muscle cell.  The results shown 

here suggest that insulin treatment for more than 4 days probably triggered a 

feedback mechanism by which GLUT4 protein level begins to be reduced. This 

finding may have physiological meanings as hyperinsulinemia is observed in 

patients with insulin resistance. Whether the high plasma insulin level in those 

patents initiates the drop of GLUT4 expression remains to be determined. 

RA also dose-dependently inhibits the GLUT4 expression in L6 cells on 

Day 4 and 6. This finding is important because there were only limited studies 

about the effect of RA on differentiated skeletal muscle cells. The inhibitory 

effects of RA on GLUT4 expression in differentiated L6 cells also indicate that 

caution needs to be taken when obese or diabetes patients are given dietary 

advice regarding VA supplement. Based on our study, supplying the system with 

more RA seems not to help the control of glucose if the expression of the GLUT4 

protein is inhibited. Excessive intake of VA may lead to more RA production 

which may cause the decrease of the expression level of GLUT4 protein in obese 

or diabetic patients. This may have negative effects on the regulation of skeletal 

glucose homeostasis in those patients.  
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The effects of RA and insulin combination on GLUT4 protein level in L6 

cells was also conducted in this study. GLUT4 protein level of L6 cells treated 

with 10 nM insulin for 4 days were significantly higher than L6 cells treated with 1 

μM RA and 10 nM insulin. This result indicates that 1 μM RA can further inhibit 

the expression of GLUT4 in the present of 10 nM insulin. The synergistic effect of 

RA and insulin further proved to us the negative influence of VA supplement if it 

was recommended to patients with obese or diabetes. According to the results 

shown in Figure 11, RA and insulin have a synergistic effect to inhibit the 

expression of GLUT4 at protein level. Matt Goff who worked in the same lab as 

me had found that the glucose usage of differentiated skeletal muscle cells 

treated with RA and insulin for 4 days increase significantly.81 The decrease 

protein level of GLUT4 cannot explain the increase of glucose usage of L6 cells. 

However, GLUT4 is not the only type of glucose transporter found in skeletal 

muscle, GLUT1 and GLUT3 were also expressed in skeletal muscle.73 Matt has 

observed the reduction of GLUT1 in L6 cells treated the same way. On the other 

hand, he has observed the induction of GLUT3 and GLUT6 expression levels 

after RA or insulin treatment.81 The expression levels of GLUT1, GLUT3 and 

GLUT6 were not tested in this study.  Since the L6 cells treated with RA and 

insulin have the increase of glucose usage, glucose probably gets into the cells 

through other GLUTs. Whether the changes of other GLUTs in L6 cells contribute 

to the elevated glucose usage remains to be investigated.  

3.5. Conclusion 
In this study, RA inhibited GLUT4 expression in L6 cells treated with 1 μM 

RA and/or 10 nM insulin. Moreover, our data also show the synergism of RA and 

insulin on GLUT4 protein expression. These results suggest that obese or 

diabetes patient should be cautious when they are given dietary 

recommendations such as VA supplements. This is because the GLUT4 

expression is important for the uptake of glucose in skeletal muscle.  
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CHAPTER FOUR 

EFFECTS OF RA ON LIPID ACCUMULATION AND  

GLUT4 EXPRESSION IN 3T3-L1 CARΔ1 ADIPOCYTES 

4.1 Introduction 
VA is one important type of fat-soluble micronutrient which is important for 

the growth and development of animals.24RA is an active metabolite of retinol 

which mediates the major functions of VA. One key role of RA is to regulate gene 

expression. RA can bind to nuclear receptors in the cell to regulate gene 

expression. RA can activate both RARs and RXRs in the nuclear receptor super 

family. Additionally, COUPTF II and HNF4α are transcriptional factors that can 

influence the expression of RA-regulated gene recently.25  

Excess lipid accumulation can lead to obesity. Exploring of the regulation 

of adipogenesis can help us overcome obesity and associated pathologies. The 

main function of adipocytes is to balance energy in body.19 Moreover, adipocytes 

can secrete important endocrine hormones such as leptin and adiponectin to 

regulate metabolism in the whole body. Both leptin and adiponectin regulate 

metabolism to control the body mass in healthy subjects.19 

            Studies on the mechanisms associated with adipogenesis have been 

done in cultured cell models, such as 3T3-L1 fibroblast cells. Insulin, 

glucocorticoid receptor agonist, and phosphodiesterase inhibitor can initiate the 

differentiation of 3T3-L1 fibroblast cells. Phosphodiesterase inhibitor can elevate 

adenosine 3’,5’-cyclic monophosphate (cAMP) levels. Differentiation of 3T3-L1 

cells can be triggered because of the treatment with this mixture.73 In contrast, 

RA can negatively regulate adipocyte differentiation.82 It has been shown that RA 

inhibits adipocyte differentiation of 3T3-L1 preadipocytes.82 GLUT4 is an 

insulin-stimulated glucose transporter. Insulin stimulation leads to the movement 

of GLUT4 from an intracellular location to the cell membrane, a process that 

leads to elevation of glucose entry into adipocytes. On the other hand, GLUT4 
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protein expression increases with the differentiation process.83 The mechanism 

of this induction of GLUT4 expression in association with differentiation is still 

unclear.  

The aim of this part of the thesis is to understand how RA can influence 

the lipid and glucose homeostasis in adipocytes. We took advantage of 3T3-L1 

CARΔ1 cells, a cell line allowing for transfection of recombinant adenoviruses.75 

The levels of RXRα and COUP-TFII were overexpressed in 3T3-L1 CARΔ1 cells 

via transfection of ad-RXRα and ad-COUPTFII. We found that RA treatment and 

overexpression of RXRα in differentiated 3T3-L1 CARΔ1 cells resulted in the 

reduction of lipid accumulation.  We also observed that RA treatment reduced the 

GLUT4 expression in differentiating 3T3-L1 CARΔ1 cells, a phenomenon that 

can be attenuated in the presence of RXRα overexpression.  

4.2 Materials and Methods 
4.2.1 Reagents 

 3T3-L1 CARΔ1 cells were provided by Dr. D. Orlicky (University of 

Colorado, Denver, CO).75 For 3T3-L1 CARΔ1 adipocytes culture and 

differentiation, 3T3-L1 differentiation medium (DMEM+10%FBS+1% 3-isobutyl-1-

methylxanthine +0.1% Insulin+0.1% dexamethasone+ P/S) and 3T3-L1 

maintenance medium (DMEM + 10%CS + P/S) were purchased from Zenbio 

Company (Research Triangle Park, NC, U.S.A.).  

Insulin and all-trans RA and were purchased from Sigma Aldrich, Corp (St. 

Louis, MO, U.S.A.). BCA protein assay kit was purchased from Pierce 

Biotechnology, Inc (Rockford, IL, U.S.A.) to test the protein concentration. 

Immobilon®-PSQ PVDF membrane was purchased from EMD Millipore Corp 

(Billerica, MA, U.S.A.). Food Club Non-fat dry milk were purchased from a 

grocery store (St. Abingdon, VA, U.S.A) to block the membrane and to make the 

first antibodies (GLUT4, β-Actin, RXRα, COUPTFII). Protease-free bovine serum 

albumin (BSA) was purchased from Fisher BioReagents™ to prepare primary  

antibodies from Cell Signaling Technology. For immunoblotting, GLUT4 antibody 

(C-terminus) was purchased from EMD Millipore Corp (Billerica, MA, U.S.A.). β-
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Actin (#4970), total Akt (#9272), phospho-Akt (Ser473) antibody, RXRα, 

COUPTFII, and horseradish peroxidase conjugated-goat anti-rabbit IgG (#7074) 

were purchased from Cell Signaling Technology (Danvers, MA, U.S.A.). ECL 

Western Blotting Substrate were purchased from Pierce Biotechnology, Inc 

(Rockford, IL, U.S.A.). 

4.2.2 Preparation of Recombinant Adenoviruses 
Recombinant adenoviruses, Ad-β-gal, Ad-RXRα, and Ad-COUPTFII have 

been used and published previously.84 The methods of recombinant adenovirus 

generation have been demonstrated before.84 When HEK 293 cells grown to 

80% confluence in 150 mm tissue culture plates, confirmed original crude lysate 

was then used to infect HEK 293 cells. The ratio of the medium to crude lysate is 

10 to 1 (v/v). After around 48-hour post infection, culture media and cells were 

collected, which was designated as the crude lysate. New crude lysates of ad-

RXRα and ad-COUPTFII were stored at -80°C until being used. 

4.2.3 3T3-L1 CARΔ1 Adipocyte Cell Culture and Differentiation 
   3T3-L1 cells with the expression of CAR Δ1 is termed as 3T3-L1 CAR 

Δ1 cells. The efficiency of transduction of recombinant adenovirus in 3T3-L1 

CAR Δ1 cells increased approximately 100-fold comparing with than in parental 

3T3-L1 cells. 3T3-L1 CARΔ1 adipocytes were maintained in 60 mm dishes in the 

incubator (37°C, 5% CO2, and 95% air) with 3T3-L1 maintenance medium 

(DMEM+10%CS+P/S).  3T3-L1 CARΔ1 adipocytes were seeded in 12-well 

plates with inoculum 3×105 cells per well. When cells reached near 100% 

confluence in the 12-well plates (Day 0), the medium was changed to 3T3-L1 

differentiation medium supplemented with RA and crude lysate of adenovirus 

(ad-β-gal, ad-RXRα or ad-COUPTFII). Cells were separated into different groups 

as follow.   

On Day 3, the media of cells with different treatments were changed to 

fresh differentiation media once. On Day 5, differentiation medium was changed 

to maintenance medium with the same doses of RA. On Day 7, cells in the 12-

well plates were fixed to for Oil Red O Staining. Then cells were observed under 
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Table 1 Different treatment groups of 3T3-L1 CARΔ1 adipocytes tranfected with or without 
adenovirus. 

A. Non viral 

Control  

Non-DM+0 

μM RA 

DM+0 μM 

RA 

DM+0.3 

μM RA 

DM+1 μM 

RA 

DM+3 μM 

RA 

DM+3 μM 

RA 

B. Ad-β-gal  Non-DM+0 

μM RA+ Ad-

β-gal 

DM+0 μM 

RA+ Ad-β-

gal 

DM+0.3 

μM RA+ 

Ad-β-gal 

DM+1 μM 

RA+ Ad-β-

gal 

DM+3 μM 

RA+ Ad-β-

gal 

DM+10 μM 

RA+ Ad-β-

gal 

C. Ad-RXRα  Non-DM+0 

μM RA+ Ad-

RXRα 

DM+0 μM 

RA+ Ad-

RXRα 

DM+0.3 

μM RA+ 

Ad-RXRα 

DM+1 μM 

RA+ Ad-

RXRα 

DM+3 μM 

RA+ Ad-

RXRα 

DM+10 μM 

RA+ Ad-

RXRα 

D. Ad-

COUPTFII  

Non-DM+0 

μM RA+ Ad-

COUPTFII 

DM+0 μM 

RA+ Ad-

COUPTFII 

DM+0.3 

μM RA+ 

Ad-

COUPTFII 

DM+1 μM 

RA+ Ad-

COUPTFII 

DM+3 μM 

RA+ Ad-

COUPTFII 

DM+10 μM 

RA+ Ad-

COUPTFII 

Note: cells in groups A to D in non-differentiated (1) or differentiated (2 to 5) conditions were 

treated without (1 and 2) or increasing concentrations (3 to 6) of RA for 7 days.  
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the optical microscope (Phase Contrast Objectives: LWD PH, 10 × 0.25). Then 

pictures were taken under a microscope (LWD PH, 20 × 0.4) via Micro Software 

(Pittsburgh, Pennsylvania USA). Oil red O retained in the cells was dissolved in 

isopropanol. Optical Density at 500 nm of these lysates was read for 

quantification. 

For the long-term RA dosage curve experiment, when cells reached near 

100% confluence (Day 0) in the 60 mm dishes, 3T3-L1 maintenance medium 

was changed to 3T3-L1 differentiation medium with increasing concentrations of 

RA in the presence of Ad-β-gal, Ad-RXRα or Ad-COUPTFII. Cells were 

separated into different groups as described in Table 4.1. On Day 3, the media of 

cells with different treatments were changed to differentiation media containing 

the indicated reagents once. On Day 5, differentiation medium was changed to 

maintenance medium with the same doses of RA. On Day 7, cells were collected 

for analysis of protein levels using immunoblotting.  

4.2.4 Oil Red O Staining 
3T3-L1 CARΔ1 adipocyte were seeded in 12-well plates. After the cell 

differentiation process, old medium was removed, and 1 ml 10% formalin was 

added to fix cells in each well. Cells were incubated in 10% formalin for 

overnight. On the next day, 10% formalin in each well was removed, and 1 ml 

distilled deionized water (dd H2O) was added to wash the cells for 3 times. 0.35 g 

Oil-Red-O was dissolved in 100 ml 100% isopropanol to mix well for at least 20 

minutes to make Oil-Red-O stock solution. Then Oil-Red-O stock was filtered 

with 0.2 μm syringe filter. Three parts of the Oil-Red-O stock solution to two parts 

of dd H2O were mixed well together to make Oil-Red-O working solution. Then 

Oil-Red-O working solution was filtered with 0.2 μm syringe filter. dd H2O in the 

12-well plates was removed, and Oil-Red-O working solution was added to each 

well of the plate. The fixed cells were incubated in Oil-Red-O (1 ml per well) 

working solution for 20 minutes. Cells were washed 3 times again with dd H2O 

and then, maintained in dd H2O to cover cells. Then, cells were observed under 
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the microscope immediately after doing Oil-Red-O Staining and pictures of cells 

were taken. 

Water in the 12-well plate with differentiated cells was removed,  and cells 

were let dry. Then, 400 μL 100% isopropanol was added to each plate and 

incubated for 20 minutes to elute Oil-Red-O at room temperature. To make sure 

that all Oil-Red-O in the solution was eluted, the isopropanol solution was 

pipetted several times to mix. The solubilized Oil-Red-O solution was transferred 

to 96-well plate to read OD 500 nm using a Glomax® Multi+Detection System.  

4.2.5 Protein Isolation and Immunoblotting 
Cell dishes were kept on ice and then culture medium pumped out through 

aspiration. Cells were washed once with 3ml ice cod PBS. Then cells are lysed in 

400 μl lysis buffer per dish. Whole cell lysates were scraped into different 

centrifugation tubes (1.5 ml). Centrifugation tubes with whole cell lysates were 

put on ice for more than 20 minutes. Then whole cell lysates were centrifuged at 

12,000 x g and 4°C for 15 minutes. Supernatants were collected into new 1.5 ml 

centrifugation tubes and stored in the freezer (-80°C).  

The protein concentration in the cell lysate supernatant was determined 

with PIERCE BCA protein assay kit (Rockford, IL). This was achieved by first 

mixing reagent A with reagent B (50:1) to make working reagent. Five μL of each 

unknown sample was then pipetted into 495 uL dd H2O in seperate labeled 

tubes. The standard protein stock (2 mg/mL) was diluted to 80, 40, 20, 10, 5 and 

0 ug/uL for making standard curve according to the manufacture’s protocol. In 1 

ml reaction, 500 μL of the working reagent was then added to each sample and 

standard protein sample. 

OD reading at 560 nm was measured using a 96 plate reader (560 nm). A 

standard curve was prepared by plotting the average Blank-corrected 560 nm 

OD readings vs. the concentrations in μg/mL. A formula derived from regression 

was obtained and used to determined the total protein concentraion of each 

sample. 
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To make the resolving gel, 5.9 mL ddH2O, 5 mL 30:0.8% w/v 

acrylamide:bisacrylamide,  3.8 mL 1.5M Tris-Cl pH 8.8, 150 μL 10% SDS were 

mixed together and 150 μL ammonium persulfate and 6 μL of TEMED were 

added. To make the stacking gel, 4.1 mL ddH2O, 1 mL 30:0.8% w/v 

acrylamide:bisacrylamide,  750 μL 1.0M Tris-Cl pH 6.8, 60 μL 10% SDS were 

mixed together and 60 μL ammonium persulfate and 6 μL of TEMED were added 

finally. 

After quantification, 40 μg total cell proteins were separated on 8% SDS-

PAGE gel. Then, separated proteins were transferred from gel to Immobilon®-

PSQ PVDF membrane, which was blocked by 5% milk diluted in 1x TBST at 

room temperature for one hour.  The primary antibodies were diluted in 1x TBST 

containing 5% BSA. Then, the membrane was incubated in the first antibody at 4 

°C for overnight. Then, the membrane was washed three times with 1x TBST (5 

minutes each time). Horseradish peroxidase-conjugated goat anti-rabbit IgG 

(second antibody) was diluted in 1x TBST containing 5% milk (1:1000). Then, the 

membrane was incubated with the second antibody for one hour. The 

membranes were washed for another three times with 1x TBST (5 minutes each 

time). Next, ECL Western Blotting Substrate was used to cover the membrane, 

which was exposed to X-ray film. Konica SRX 101A Film Processor was used to 

develop the film. Quantification analysis was performed on Image J software 

(NIH, Bethesda, Maryland, USA). The density of a protein band was calculated 

by subtracting the background in an area of the same size near protein band. 

Then, the ratio of the density of the indicated protein to that of the control protein 

(protein of interest/β-actin) was calculated for quantification. 

4 .2.6 Statistical Analysis 
All experiments were repeated three times. One-way ANOVA with LSD 

post-hoc statistical analysis was conducted using SPSS version 22 statistical 

software (IBM, Armonk, NY, U.S.A.). Data were presented as means ± S.E.M. p-

value less than 0.05 was considered statistically significant. 
 



www.manaraa.com

 

56 
 

4.3 Results 
4.3.1 RA Inhibits Lipid Accumulation in 3T3-L1 CARΔ1 Cells  

 To study the RA effects on lipid accumulation, 3T3-L1 CARΔ1 cells were 

differentiated in RA doses without or with Ad-β-gal transfection. In Figure 13 A, 

lipid accumulation decreased with the increase of RA concentration. Figures 13 

B, C&D show the quantification of the lipid accumulation data.  

As shown in Figure 13 B, in the RA doses experiment, the control 3T3-L1 CARΔ1 

adipocytes treated with differentiated medium had significantly higher lipid 

accumulation than the 3T3-L1 CARΔ1 cells treated with maintenance medium. 

This result indicated that 3T3-L1 CARΔ1 adipocytes were well differentiated in 

differentiation medium. The amounts of lipid accumulation in those differentiating 

3T3-L1 CARΔ1 cells treated with RA at 0.3, 1,3, and 10 μM were significantly 

lower than that in differentiating 3T3-L1 CARΔ1 cells treated without RA. This 

result proved to us that RA can significantly inhibit lipid accumulation in 3T3-L1 

CARΔ1 cells during the differentiation process. There were no significant 

differences of lipid accumulation between 3T3-L1 cells treated with RA at 0.3 μM 

and 1 μM. The lipid accumulation in 3T3-L1 CARΔ1 cells treated with RA at 0.3 

μM or 1 μM was significantly higher than that in those treated with RA at 3 μM. 

This result indicates that RA at 3 μM can further inhibit the lipid accumulation in 

3T3-L1 CARΔ1 cells compared with those treated with RA at 0.3 μM or 1 μM. As 

a result, RA at 3 μM reached the highest inhibitory effect on lipid accumulation in 

3T3-L1 CARΔ1 cells. The lipid accumulation in 3T3-L1 CARΔ1 cells treated with 

RA at 0.3, 1, 3 or 10 μM RA was significantly higher than in those cells cultured 

in non-differentiation medium. Although RA can inhibit the lipid accumulation in 

3T3-L1 CARΔ1 cells, certain amount of lipid can still accumulate in 3T3-L1 cells 

at a significant level.  

As described in Figure 13 B, lipid accumulation in 3T3-L1 CARΔ1 cells 

treated with differentiated medium was significantly higher than those treated 

with maintenance medium. This result indicates that the 3T3-L1 CARΔ1 cells 

transfected with ad-β-gal differentiated well. The amounts of lipid accumulation in 



www.manaraa.com

 

57 
 

Figure 13: RA Inhibits the Lipid Accumulation in 3T3-L1 CARΔ1 adipocyte cell treated with 
or without ad-β-gal. A: lipid accumulation in differentiating 3T3-L1 cells treated with RA doses 

with or without ad-β-gal. B, C&D: Quantification of lipid accumulation in 3T3-L1 CARΔ1 adipocyte 

cell. The cells were cultured in triplicates for 120 h (5 days) in 3T3-L1 differentiation medium 

containing different doses of RA. Ad-β-gal was added on Day 0 of differentiation. 3T3-L1 

differentiation medium was changed to 3T3-L1 maintenance medium containing different 

concentration of RA for 48 hours (2 days). 
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3T3-L1 cells treated with RA at 0.3,1,3 and10 μM with differentiation medium 

were significantly lower than that in 3T3-L1 CARΔ1 cells treated without RA in 

differentiation medium. This result proved to us that RA can significantly inhibit 

lipid accumulation in 3T3-L1 CARΔ1 cells infected with ad-β-gal during 

differentiation process. There was no significant difference among differentiating 

3T3-L1 cells treated with different doses of RA. The lipid accumulation in 3T3-L1 

CARΔ1 cells treated with RA at 3 μM or 10 μM was not significantly different from 

that treated with the non-differentiation medium. There was almost no lipid 

accumulation in 3T3-L1 CARΔ1 cells treated with RA at 3 μM or 10 μM, which 

indicates that RA at 3 μM or 10 μM can effectively inhibit the lipid accumulation in 

3T3-L1 CARΔ1 cells transfected with Ad-β-gal. As a result, the inhibition of RA 

on lipid accumulation in 3T3-L1 CARΔ1 cells is more obvious in cells transfected 

with ad- β-gal. The transfection of ad-β-gal does not affect the inhibitory effect of 

RA on the lipid accumulation in differentiating 3T3-L1 CARΔ1 cells. 

When comparing the differentiating 3T3-L1 CARΔ1 cells treated with RA 

doses in the absence of recombinant adenovirus transfection with that 

transfected with ad-β-gal and treated with RA, there was no significant difference 

of lipid accumulation in cells treated with RA at 0.3, 1, 3 or 10 μM.  The lipid 

accumulation in differentiating 3T3-L1 cells transfected with ad-β-gal was 

significantly higher than that without viral transfection in RA 0 μM treatment 

group. It suggests that transfection of recombinant adenovirus or overexpress of 

β-gal may cause more lipid accumulation in the differentiation process. This 

result demonstrated the importance to use ad-β-gal as a control group to study 

the overexpression of other proteins.  

In summary, RA can inhibit the lipid accumulation in differentiating 3T3-L1 

cells in the absence or present of ad-β-galinfection. In the groups of 

differentiating 3T3-L1 cells treated without ad-β-gal transfection, RA at 3 μM 

presented the highest inhibitory effect. In the groups of differentiating 3T3-L1 

CARΔ1 cells transfected with ad-β-gal, RA at 0.3,1, 3 and 10 μM presented 

similar inhibitory effects on lipid accumulation. Either recombinant adenovirus or 
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overexpress of β-gal may influence the function of RA to inhibit lipid accumulation 

in differentiating 3T3-L1 cells.  Therefore, 3T3-L1 cells infected with ad-β-gal can 

serve as the controls for 3T3-L1 infected with ad-RXRα or COUPTFII. 

4.3.2 RA Inhibits Lipid Accumulation in 3T3-L1 CARΔ1 Cells Transfected 
with Ad-RXRα 

The influence of RXRα overexpression on the lipid accumulation in 3T3-L1 

CARΔ1 cells treated with increasing concentrations of RA were assessed by Oil-

Red-O staining as shown in Fig. 13 A. Quantification of lipid accumulation in cells 

transfected with ad-β-gal or ad-RXRα and treated with RA after differentiation 

was done by the measurement of OD 500 nm. (Fig. 13 C).  

Here, we conducted RA dosage experiment in 3T3-L1 CARΔ1 adipocytes 

transfected with ad-β-gal or ad-RXRα. Figure 13 A also presents microscopic 

pictures of the lipid accumulation in 3T3 cells treated with ad-β-gal or ad-RXRα. 

As shown in Figure 13 C, lipid accumulation in ad-RXRα-transfected 3T3-L1 

CARΔ1 adipocytes treated with differentiated medium without RA was 

significantly higher than those with only maintenance medium. This result 

indicated that the 3T3-L1 CARΔ1 cells were well differentiated when transfected 

with ad-RXRα. The lipid accumulation in those differentiating 3T3-L1 CARΔ1 

cells treated with RA at 0.3,1,3, or 10 μM was significantly lower than 

differentiating 3T3-L1 CARΔ1 cells treated without RA. This result proved to us 

that RA can significantly inhibit lipid accumulation in 3T3-L1 CARΔ1 cells 

transfected with ad-RXRα during the differentiation process.  

The lipid accumulation of the ad-RXRα-transfected 3T3-L1 CARΔ1 cells 

treated without RA was significantly lower than those ad-β-gal-transfected cells 

treated without RA. This result indicates that the overexpression of RXRα may 

inhibit the lipid accumulation in differentiating 3T3-L1 CARΔ1 cells with no RA. 

The lipid accumulation in ad-RXRα-transfected 3T3-L1 CARΔ1 cells treated with 

RA at 0.3 μM had significantly lower lipid accumulation than the ad-β-gal-

transfected cells treated with 0.3 μM RA. The overexpression of RXRα may help 



www.manaraa.com

 

62 
 

to mediate the inhibitory influence of RA on lipid accumulation in differentiating 

3T3-L1 CARΔ1 cells.  

In summary, RA can significantly inhibit lipid accumulation in 3T3-L1 

CARΔ1 cells transfected with ad-RXRα during the differentiation process. 

Overexpression of RXRα may inhibit the lipid accumulation in differentiating 3T3-

L1 CARΔ1 cells in the absence or presence of RA.  

4.3.3 RA Inhibits Lipid Accumulation in 3T3-L1 CARΔ1 Cells Transfected 
with Ad-COUPTFII 

The changes of lipid accumulation in 3T3-L1 CARΔ1 cells transfected with 

ad-β-gal or ad-COUPTFII and treated with increasing concentrations of RA were 

assessed by Oil-red-O staining as shown in Fig. 13 A. Quantification of lipid 

accumulation changes in ad-β-gal-transfected or ad-CPOUTFII-transfected cells 

were detected by measurement of OD 500 nm, as shown in Fig. 13 D. 

Figure 13 A presents microscopic pictures of the lipid accumulation in cells 

transfected with ad-β-gal or ad-COUPTFII. As described in Figure 13 D, the  ad-

COUPTFII-transfected 3T3-L1 CARΔ1 cells treated with differentiation medium 

without RA had significantly higher lipid accumulation than those treated with 

only maintenance medium in the absence of RA. This result indicates that the 

3T3-L1 CARΔ1 cells were well differentiated with ad-COUPTFII. There was no 

significant difference between 3T3-L1 cells treated with RA at 0 μM and 0.3 μM 

in the ad-COUPTFII-transfected 3T3-L1 CARΔ1 cells with differentiation medium. 

There was no significant difference in 3T3-L1 cells treated with RA at 1 μM, 3 μM 

or 10 μM. The lipid accumulation levels of ad-COUPTFII-transfected 3T3-L1 

CARΔ1 cells treated with RA at 0 μM and 0.3 μM were significantly higher than 

those treated with RA at 1 μM, 3 μM or 10 μM. As a result, RA can still inhibit the 

lipid accumulation in differentiating 3T3-L1 CARΔ1 cells with the overexpression 

of COUPTFII. 

The lipid accumulation of ad-COUP-TFII-transfected cells was significantly 

lower than ad-β-gal-transfected cells treated with differentiation medium in the 

absence of RA. This result indicates that the overexpression of COUPTFII may 



www.manaraa.com

 

63 
 

inhibit the lipid accumulation in differentiating 3T3-L1 CARΔ1 cells. The lipid 

accumulation levels of ad-β-gal-transfected and ad-COUP-TFII-transfected cells 

treated with increasing concentrations of RA were not significantly different from 

each other. 

4.3.4 Differentiation process Increases GLUT4 Protein Level in 3T3-L1 
CARΔ1 Adipocytes 
 To test the influence of RA treatment on GLUT4 expression and the 

potentials of using recombinant adenovirus to alter the expression levels of 

transcription factors, 3T3-L1 CARΔ1 adipocytes in differentiation process were 

treated with RA doses and ad-β-gal. Fig 14 shows the expression levels of 

GLUT4 and β-actin protein levels. The cells were cultured for 120 h (5 days) in 

3T3-L1 differentiation medium containing 0, 0.3 ,1 ,3, or 10 μM RA. Ad-β-gal was 

added at Day 0 of differentiation. 3T3-L1 differentiation medium was changed to 

3T3-L1 maintenance medium containing 0, 0.3 ,1,3, or 10 μM RA after 48 hours 

(2 days). All cultured cells on Day 7 were lyzed for western blot analysis of 

protein expression. 

As shown in Figure 14 on the left panel, in the non-differentiating group 

without ad-β-gal transfection, there was almost no GLUT4 protein detected. 

GLUT4 protein levels in differentiating 3T3-L1 CARΔ1 cells were obviously 

higher than that in non-differentiating 3T3-L1 CARΔ1cells in the absence of ad-β-

gal transfection. This result proved that the differentiation process increases 

GLUT4 protein level in 3T3-L1 CARΔ1 cells. We can observe a slightly decrease 

trend of GLUT4 expression in the differentiating 3T3-L1 CARΔ1 cells treated with 

RA at 0, 0.3, 1, 3 or 10 μM.  

As shown in Fig 14 on the right panel, the Ad-β-gal-transfected 3T3-L1 

CARΔ1 cells had almost no expression of GLUT4, which is similar to the cells 

without any recombinant adenovirus transfection. The GLUT4 expression level in 

ad-β-gal-transfected 3T3-L1 CARΔ1 cells was also slightly reduced with the 

increase of RA concentration. We conclude that RA can inhibit the GLUT4 

protein expression in differentiating 3T3-L1 CARΔ1 cells. Adenovirus-mediated  
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Figure 14 Changes in GLUT4 expression in 3T3-L1 CARΔ1 Adipocyte Cell transfected with 
or without Ad-β-gal. The cells were cultured in triplicates for 120 hours (5 days) in 3T3-L1 

differentiation medium containing different doses of RA. Ad-β-gal was added on Day 0 of 

differentiation. 3T3-L1 differentiation medium was changed to 3T3-L1 maintenance medium 

containing different doses of RA for 48 hours (2 days).  Whole cell lysate was collected on Day 7 

as described in Materials & Methods. Blots were visually detected using ECL Western Blotting 

Substrate. The ratio of the densities of GLUT4 to β-Actin was calculated to do data analysis with 

control group set as 1. 
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transfection has no significant influence on the GLUT4 protein levels in 3T3-L1 

CARΔ1cells. 

4.3.5 Overexpression of RXRα was achieved by ad-RXRα in Differentiating 
3T3-L1 CARΔ1 Adipocytes 

To explore the transcription factors that may mediate the RA-suppressed 

GLUT4 protein expression in differentiating 3T3-L1 CARΔ1 cells, we compared 

the RXRα and β-actin expression levels in 3T3-L1 cells transfected with ad-β-gal 

or ad-RXRα as shown in Fig.4.3. The cells were cultured in triplicates for 120 

hours (5 days) in 3T3-L1 differentiation medium containing 0, 0.3,1,3, or 10 μM 

RA. Ad-β-gal and ad-RXRα were added at Day 0 of differentiation. 3T3-L1 

differentiation medium was changed to 3T3-L1 maintenance medium containing 

0, 0.3,1,3, or 10 μM RA after 48 hours (2 days). All cultured cells on Day 7 were 

lyzed to do immunoblotting.  

In Fig 4.3, RXRα protein level in ad-β-gal transfected 3T3-L1 CARΔ1 cells 

treated with differentiation medium without RA was slightly higher than non-

differentiating 3T3-L1 cells in the absence of RA. There was almost no RXRα 

detected in the Ad-β-gal-transfected 3T3-L1 CARΔ1 cells treated with RA at 0.3, 

1, 3 or 10 μM in differentiation medium. As shown in Fig 4.3, RXRα protein was 

detected in all groups of 3T3-L1 CARΔ1 cells in the presence of ad-RXRα 

transfection. RA-suppressed RXRα expression is absent when RXRα is 

overexpressed by ad-RXRα. 

In the RA at 0.3, 1, 3 and 10 μM groups, RXRα protein level in ad-RXRα-

transfected 3T3-L1 cells with differentiation medium were obviously higher than 

ad-β-gal transfected 3T3-L1 cells in respective treatment groups. In the RA at 0 

μM differentiation groups, RXRα protein level in ad-RXRα-transfected 3T3-

L1CARΔ1 cells with differentiation medium was higher than ad-β-gal transfected 

3T3-L1 cells with differentiation medium. In the RA at 0 μM non-differentiation 

groups, RXRα protein level in ad-RXRα-transfected 3T3-L1CARΔ1 cells with 

differentiation medium was obviously higher than ad-β-gal transfected 3T3-L1 

cells with differentiation medium. 
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Figure 15 RXRα protein levels in 3T3-L1 CARΔ1 adipocytes. The cells were cultured in 

triplicates for 5 days in 3T3-L1 differentiation medium containing 0, 0.3 ,1 ,3, or 10 μM RA. Ad-β-

gal or ad- RXRα was added at Day 0 of differentiation. 3T3-L1 differentiation medium was 

changed to 3T3-L1 maintenance medium containing RA after treatment for 2 days.  Whole cell 

lysate was collected on Day7 as described in Materials & Methods. Blots were visually detected 

using ECL Western Blotting Substrate. The ratio of the density of RXRα to that of β-Actin was 

calculated to do analyze data with control group set as 1. 
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Those results proved to us that recombinant adenovirus mediated the 

overexpression of targeted proteins 3T3-L1 CARΔ1 cells in both non-

differentiated and differentiated conditions. This established the foundation for us 

to use 3T3-L1 CARΔ1 for studies of protein functions through recombinant 

adenovirus-mediated overexpression. 

4.3.6 RA-mediated Reduction of GLUT4 Protein Level was Attenuated by 
Recombinant Adenovirus-mediated RXRα Overexpression in Differentiating 
3T3-L1 CARΔ1 Adipocytes  

Fig 16 shows that GLUT4 protein levels in ad-β-gal-transfected or ad-

RXRα-transfected 3T3-L1 CARΔ1cells treated with non-differentiation medium or 

differentiation medium containing increasing concentrations of RA. The cells and 

treatment were the same as Fig 15. 

The GLUT4 protein levels in ad-β-gal-transfected 3T3-L1 CARΔ1 cells 

treated with differentiation medium containing RA at 0, 0.3,1,3 or 10 μM were 

significantly higher than that treated with non-differentiation medium. There were 

almost no GLUT4 detected in the non-differentiating cells treated without RA. 

This result further proved that the differentiation process led to the induction of 

GLUT4 protein expression in 3T3-L1 CARΔ1 cells.  GLUT4 protein level in 

differentiating cells treated with RA at 0, 0.3 or 1 μM were almost same with each 

 other. GLUT4 protein level in differentiating cells treated with RA at 3 or 10 μM 

were significantly lower than differentiating cells treated without or with 0.3 μM 

RA. We conclude that RA inhibits the GLUT4 protein level in ad-β-gal-transfected 

3T3-L1 CARΔ1 cells during the process of differentiation. 

Similar to the results in the groups of 3T3-L1 cells with β-gal transfection, 

GLUT4 protein levels in the non-differentiating cells without RA treatment was 

significantly lower than the differentiating 3T3-L1 cells with RXRα 

overexpression. GLUT4 protein levels in differentiating cells treated with RA at 0, 

0.3, 1, 3 and 10 μM were almost same with each other in the 3T3-L1 cells with 

RXRα overexpression. Moreover, when compared GLUT4 levels in differentiating 

3T3-L1 CARΔ1 cells with β-gal transfection with that with RXRα transfection in 
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Figure 16 GLUT4 protein levels in 3T3-L1 CARΔ1 adipocytes transfected with Ad-β-gal or 
Ad-RXRα. The cells were cultured in triplicates for five days in 3T3-L1 differentiation medium 

containing 0, 0.3,1,3, or 10 μM RA. Ad-β-gal or ad-RXRα was added at Day 0 of differentiation. 

Differentiation medium was changed to maintenance medium after two days.  Whole cell lysate 

was collected on Day7 as described in Materials & Methods. Blots were visually detected using 

ECL Western Blotting Substrate. The ratio of the density of GLUT4 to that of β-Actin was 

calculated to do data analyze with control group set as 1. A: A representative blot of protein levels 

of RXRα and β-actin in 3T3-L1 CARΔ1 adipocytes. B: Quantification analysis of RXRα. All p-

values  0.05, a>b>c>d>e, One-way ANOVA was used to analyze data ( means ± S.E.M (n=3)) 
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in the RA at 3 μM or 10 μM treatment group, we found that the protein level of 

GLUT4 in ad-RXRα transfected 3T3-L1 cells were significantly higher than that in 

ad-β-gal-transfected 3T3-L1 cells treated with RA at the respective dosages. We 

already proved that RXRα was overexpressed successfully by ad-RXRα in both 

non-differentiated and differentiated 3T3-L1 cells as shown in Figure 15. We 

conclude that RA inhibits the expression of GLUT 4 in differentiated 3T3-L1 

CARΔ1 cells with β-gal transfection. Interestingly, when RXRα was 

overexpressed in 3T3-L1 CARΔ1 cells, it attenuated the inhibitory effects of RA 

on GLUT4 expression. GLUT4 protein level was increased as a result. This 

finding is novel and very important to understand the glucose metabolism in 3T3-

L1 CARΔ1 cells.  
4.3.7 COUPTFII was Overexpressed Successfully by recombinant 
adenovirus in 3T3-L1 CARΔ1 Adipocytes 

We have shown that COUP-TFII also affected the RA signaling.84 

Therefore, we also overexpressed COUP-TFII to study its effect on GLUT4 

expression in 3T3-L1 CARΔ1 cells. Fig 17 shows that GLUT4 protein levels in 

ad-β-gal-transfected or ad-RXRα-transfected 3T3-L1 CARΔ1 cells treated with 

non-differentiation medium or differentiation medium containing increasing 

concentrations of RA. Cells were treated the same as that in Fig. 16. 

COUPTFII protein levels in ad-β-gal-transfected 3T3-L1 cells treated with 

differentiation medium presented a trend of elevation with the increasing of RA 

doses. RA may help to increase the induction of COUPTFII in differentiating 3T3-

L1 CARΔ1 cells. COUPTFII protein levels in differentiating ad-β-gal-transfected 

3T3-L1 CARΔ1 cells treated with RA at 0, 0.3, 1, 3, and 10 μM were all higher 

than the non-differentiating ad-β-gal-transfected 3T3-L1 CARΔ1 cells without RA. 

This result proved to us that differentiation process may increase the protein level 

of COUPTFII. 

The COUPTFII protein levels in ad-COUP-TFII-transfected 3T3-L1 CARΔ1 

cells treated with differentiation medium were obviously higher than that treated 

with non-differentiation medium as shown Fig. 17 right panel.  The cells treated 
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Figure 17 COUPTFII protein levels in 3T3-L1 CARΔ1 adipocytes. The cells were cultured in 

triplicates for five days in 3T3-L1 differentiation medium(DM) containing 0, 0.3,1,3, or 10 μM RA. 

Ad-β-gal or ad- COUPTFII was added at Day 0 of differentiation. DM was changed to 

maintenance medium for two days.  Whole cell lysate was collected on Day7 as described in 

Materials & Methods. Blots were visually detected using ECL Western Blotting Substrate. The 

ratio of the density of COUPTFII to that of β-Actin was calculated to do data analysis with control 

group set as 1.  
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with RA at 0, 0.3, 1, 3, and 10 μM had similar amount of COUP-TFII expression 

in differentiating ad-COUP-TFII-transfected 3T3-L1 cells. This result further 

proved to us that differentiation medium which contains insulin may induce the 

expression of COUPTFII. 

When compared the expression levels of COUP-TFII in ad-β-gal -

transfected 3T3-L1 CARΔ1cells with that in the ad-COUP-TFII-transfected one, 

we found that the protein level of COUPTFII in non-differentiated 3T3-L1 cells 

with COUPTFII overexpression was a little lower than that in differentiating ad-

COUPTFII 3T3-L1 CARΔ1 cells. In the RA at 0, 0.3,1,3, and 10 μM treatment 

groups, protein levels of COUPTFII in differentiating ad-β-gal-transfected 3T3-L1 

cells was obviously higher than that in the non-differentiating ad-β-gal-transfected 

3T3-L1 CARΔ1 cells respectively. This result proved that COUPTFII can also be 

induced during the process of differentiation. This result is very important 

because it proved to us that ad-COUPTFII was successfully overexpressed by 

ad-COUP-TFII in differentiated 3T3-L1 CARΔ1 cells which established the based 

for our next research. 

4.3.8 Differentiating ad-COUPTFII-transfected 3T3-L1 CARΔ1 Adipocytes 
Treated with RA Further Decreases GLUT4 Protein Level 

Fig 18 A shows the GLUT4 protein levels in ad-β-gal-transfected or ad- 

COUPTFII -transfected 3T3-L1 CARΔ1cells treated with non-differentiation 

medium or differentiation medium containing increasing concentrations of RA. 

The cells and treatment were the same as Fig 17. Fig 18 B described the 

quantification of GLUT4 protein in those cells. 

The results of GLUT4 protein levels in β-gal-transfected 3T3-L1 cells were 

the same as described in Fig. 16 A. Similar to the results in the groups of 3T3-L1 

CARΔ1 cells with β-gal overexpression, GLUT4 protein levels in the non-

differentiating cells without RA was significantly lower than that in the 

differentiating cells with COUPTFII overexpression. In the Ad-COUP-TFII-

transfected 3T3-L1 CARΔ1 cells, the GLUT4 protein level in differentiating cells 

treated with RA at 0, 0.3, 1, 3 or 10 μM were significantly lower than non-  
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Figure 18 GLUT4 protein levels in 3T3-L1 CARΔ1 adipocytes transfected with Ad-β-gal or 
ad- COUPTFII. The cells were cultured in triplicates for five days in 3T3-L1 differentiation medium 

(DM) containing 0, 0.3,1,3, or 10 μM RA. Ad-β-gal or ad- COUPTFII was added at Day 0 of 

differentiation. DM was changed to maintenance medium after two days.  Whole cell lysate was 

collected on Day 7 as described in Materials & Methods. Blots were visually detected using ECL 

Western Blotting Substrate. The ratio of the density of GLUT4 to that of β-Actin was calculated to 

do data analysis with control group set as 1. A: A representative blot of protein levels of GLUT4 

and β-actin in 3T3-L1 CARΔ1 adipocyte cell. B: Quantification analysis of GLUT4. All p-values  

0.05, a>b>c>d>e>f>g>h, One-way ANOVA were used to analyse data (means ± S.E.M (n=3)) 
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differentiating cells treated without RA. GLUT4 protein level in differentiating cells 

treated with RA at 0.3 or 1 μM were significantly higher than that in differentiating 

cells treated with RA at 3 or 10 μM. GLUT4 protein level in differentiating cells 

treated with 3 μM RA was significantly higher than differentiating cells treated 

with RA at 10 μM. We conclude that RA may inhibit the GLUT4 protein level in a 

dose dependent manner in Ad-COUP-TFII-transfected 3T3-L1 CARΔ1 cells. 

Interestingly, we found protein levels of GLUT4 in 3T3-L1 CARΔ1 cells 

with COUPTFII overexpression were significantly lower than the 3T3-L1 cells 

with β-gal transfection in RA at 3 or 10 μM, respectively. We demonstrated that 

COUPTFII was overexpressed successfully in differentiated 3T3-L1 CARΔ1 cells.  

We conclude that the COUPTFII overexpression may facilitate the inhibitory 

effects of RA on the expression of GLUT4.  

4.4 Discussion 
4.4.1 The inhibitory effect of RA on lipid accumulation in differentiating 
3T3-L1 CARΔ1 cells may be mediated by RXRα 

The effects of RA depend on its concentration and duration of action. It 

has been shown that RA may block adipogenesis when introduced at early 

stages of differentiation (24h).82 Moreover, it was shown that the inhibition of RA 

on adipocyte differentiation via RA is mediated by RARs. 82 In the study, RA was 

found to inhibit adipogenesis which was presented in Figure 13. Interestingly, we 

found the adipogenesis was further inhibited in ad-RXRα-infected 3T3-L1 cells. 

Overexpression of RXRα may help to mediate the inhibitory effect of RA on lipid 

accumulation in differentiating 3T3-L1 CARΔ1 cells. This finding was different 

from the results of Mitchell Lazar’s study that the inhibition influence of RA on 

adipocyte differentiation were likely to be mediated by RARs rather than RXRs.82 

We hypothesize that the expression of RXRα in 3T3-L1 CARΔ1 cell may be too 

low to present significant inhibit effects on adipocyte differentiation or RXRα 

expression may be suppressed by the differentiation process.85 

Here, we showed that overexpression of RXRα was achieved by ad-RXRα 

in differentiating 3T3-L1 CARΔ1 adipocytes as described in Figure 15. 3T3-L1 
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CAR Δ1 cells can be transduced effectively by recombinant adenovirus than 

general 3T3-L1 cells. The overexpression of RXRα supports the finding that 

RXRα may help to mediate the inhibitory effect of RA on lipid accumulation in 

differentiating 3T3-L1 CARΔ1 cells. 

Another difference between my study and Mitchell Lazar’s research is the 

difference of RA concentrations used. We found that the overexpression of RXRα 

may help to mediate the inhibitory effect of RA on lipid accumulation in 

differentiating 3T3-L1 CARΔ1 cells when the concentration of RA was at 0.3 μM. 

Whereas, Mitchell Lazar only examined the influence of 10 μM RA on lipid 

accumulation in differentiating 3T3-L1 CARΔ1 cells.85 

4.4.2 Overexpression of COUPTFII enhances the inhibitory effect of RA on 
lipid accumulation in differentiating 3T3-L1 CARΔ1 cells 

COUP-TFII expression is important in adipocyte differentiation. It has been 

proved by Evan Rosen that overexpression of COUP-TFII in 3T3-L1 

preadipocytes inhibits adipogenesis.86 As described in Figure 17 in my study, 

COUPTFII was overexpressed successfully by recombinant adenovirus in 3T3-

L1 CARΔ1 adipocytes. We further proved that overexpression of COUPTFII may 

inhibit the lipid accumulation in differentiating 3T3-L1 CARΔ1 cells. Previous 

results of our lab have shown that overexpression of COUPTFII inhibited the RA-

induced glucokinase gene expression in primary hepatocytes.81 However, in my 

study, overexpression of COUPTFII did not attenuate the inhibition influence of 

RA on lipid accumulation in differentiating 3T3-L1 CARΔ1 cells as described in 

Figure 13 D. 

4.4.3 RA-suppressed expression of GLUT4 is mediated by the expression 
of RXRα proteins in 3T3-L1 cells 

To understand the molecular pathogenesis of obesity and specifically the 

role of RXRα in differentiation process of 3T3-L1 CARΔ1 cells, ad-RXRα was 

used to transfect 3T3-L1 CARΔ1 cells and analyzed the expression levels of 

GLUT4 protein. When RXRα was overexpressed in 3T3-L1 CARΔ1 cells, it 

attenuated the inhibitory effects of RA on GLUT4 expression. GLUT4 protein 
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level remains constant in the presence of RA. This result is totally new. It shows 

that the RA-suppressed expression of GLUT4 probably is mediated by the 

expression of RXRα proteins in 3T3-L1 cells. Although it is acknowledged that 

total GLUT4 protein expression does not reflect the member-bound GLUT 4 

which is considered the functional form to transport glucose into adipocytes, the 

underlying mechanism about the change of total GLUT4 protein expression still 

deserves to be futher investigated. 

4.4.4 RA-suppressed expression of GLUT4 is enhanced by the expression 
of COUPTFII proteins in 3T3-L1 cells 
 To understand the role of COUPTFII in differentiation process of 3T3-L1 

CARΔ1 cells, ad-COUPTFII was used to overexpression it in 3T3-L1 CARΔ1 

cells. Our results showed a reduction of GLUT4 expression, which is similar to 

what has been observed by Evan Rosen. Their group also reported that the 

GLUT4 protein level in differentiating adipocyte significantly decreased when 

COUPTFII was overexpressed.86 Interestingly, different from RXRα, 

overexpression of COUPTFII seems to facilitate the inhibitory effects of RA on 

the expression of GLUT4. The inhibitory effects of RA on the expression of 

GLUT4 was enhanced as a result. These results seem to indicate that the 

relative amounts of RXRα and COUP-TFII in 3T3-L1 CARΔ1 cells probably play 

an important role in mediating the RA effects on GLUT4 expression. Whether this 

is the case remains to be investigated. 

4.5 Conclusion: 
Here, we found that the overexpression of RXRα or COUP-TFII inhibited 

lipid accumulation in 3T3-L1 CARΔ1 cells, RA-mediated inhibition of lipid 

accumulation in differentiating 3T3-L1 CARΔ1 cells may be facilitated by 

overexpression of RXRα, but not COUP-TFII.  Interestingly, the RA-inhibited 

GLUT4 expression is attenuated by overexpression of RXRα and potentiated by 

overexpression of COUP-TFII. The findings shown here will help us to 

understand the roles of nutrients and hormones in the control of functions of 

adipocytes, and in turn, the pathogenesis of obesity. 
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   CHAPTER FIVE  

CONCLUSIONS AND FUTURE DIRECTIONS 

   5.1 Conclusions 
Skeletal muscle and adipose tissues play key roles in lipid and glucose 

metabolism. These are achieved through their responses to nutritional and 

hormonal stimulation. We demonstrated in this thesis that VA and insulin may 

work together to regulate macronutrient metabolism in cells. As a metabolite of 

VA and the main mediator of its actions, RA regulates transcription of genes. We 

aimed to find the effects of RA on the GLUT4 expression levels in L6 muscle 

cells and 3T3-L1 CARΔ1 adipocytes with or without insulin. Understanding the 

mechanism by which how RA influences macronutrient metabolism helps us to 

better control obesity and type 2 diabetes. This thesis contains two parts. Studies 

in the first part were conducted in L6 myocytes, which is a good model to study 

glucose metabolism and differentiation process in skeletal muscle. Studies in the 

second part were conducted in 3T3-L1 CARΔ1 cells, which is a good model to 

study adipocyte metabolism and preadipocyte differentiation. Compared with the 

parental 3T3-L1 cells, 3T3-L1 CAR Δ1 cells allow the transduction of genetic 

materials through the use of recombinant adenoviruses, which is an important 

feature for us to study the functions of transcription factors affecting RA signaling.  

We showed here that both RA and insulin inhibit the expression levels of 

GLUT4 in L6 cells after 4 and 6 days of treatment. Interestingly, the synergy 

effects between RA and insulin can be seen at Day 4 with RA at 1 μM. In the 

differentiating 3T3-L1 CARΔ1 cells, RA treatment leads to the decrease of lipid 

accumulation in 3T3-L1 CARΔ1 cells during the cell differentiation in this study. 

Additionally, overexpression of RXRα enhanced the inhibitory effects of RA on 

lipid accumulation in RA 0.3 μM group. RA treatment reduced the expression 

levels of GLUT4 and RXRα in differentiating 3T3-L1 CARΔ1 cells. 

Overexpression of RXRα attenuated the RA-inhibited GLUT4 expression. Other 
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the other hand, the inhibitory effects of RA on GLUT4 expression can be 

enhanced with COUPTFII overexpression. 

We conclude that GLUT4 expression in both L6 and 3T3-L1 CARΔ1 cells 

can be reduced in the presence of RA. In addition, RA synergizes with insulin to 

reduce GLUT4 expression in L6 cells. RA-inhibition of GLUT4 expression in 3T3-

L1 CARΔ1 cells may be mediated by the reduction of RXRα expression by RA.  

   5.2 Future Directions 
We hope that our finding about the synergistic effects of RA and insulin on 

GLUT4 expression in L6 cells will bring attention of clinicians regarding the 

potential effects of VA supplement in patients with obesity and diabetes. Insulin 

resistance is commonly found in patients with obesity and diabetes . There is a 

possibility that the insulin in plasma level is significantly high. If the patients with 

diabetes or obesity intake VA supplements, their insulin in plasma and VA may 

have a synergistic effect to inhibit the GLUT4 protein level in skeletal muscle 

which is not good for the entry of glucose into the tissue. 

Previous results from the lab showed that glucose usage of differentiated 

skeletal muscle cells treated with RA and insulin for 4 days increase 

significantly.81 The decrease protein level of GLUT4 cannot explain the increase 

of glucose usage of L6 cells. The reason may be that GLUT1 and GLUT3 were 

also expressed in skeletal muscle. It was found GLUT1 decreased in L6 cells 

treated the same way. Whereas, he has observed the induction of GLUT3 and 

GLUT6 expression levels after RA and insulin treatments. I have not measured 

the expression levels of these GLUTs.  We hypothesize glucose probably gets 

into the cells through other GLUTs since the L6 cells treated with RA and insulin 

have the increase of glucose usage. In the future, we plan to study the GLUT1, 

GLUT3 and GLUT6 expression in L6 cells. However, GLUT4 is not the only type 

of GLUTs expressed in skeletal muscle.  

The GLUT4 expression is inhibited by RA in 3T3-L1 CARΔ1 cells. We 

have not examine whether there is a synergy of RA and insulin in the regulation 
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of GLU4 expression in adipocytes. Future experiment to determine what the role 

of insulin is in the RA-inhabited GLUT4 expression are needed.  

In addition, we also demonstrated that 3T3-L1 CARΔ1 cells is an effective 

cell line to test the roles of RXRα and COUP-TFII in GLUT4 expression. These 

cells will also be used to investigate the functions of other transcription factors to 

mediate insulin and RA responses in adipocytes. 

   5.3 Summary 
The data presented here in my study help us to understand the influence 

of RA in expression levels of proteins for glucose metabolism in both skeletal 

muscle and adipocytes. The synergistic effect of RA and insulin on GLUT4 

expression suggests that the use of VA supplements in people with diabetes or 

obesity should be cautious. The results of GLUT4 expression and RXRα 

overexpression in 3T3-L1 CARΔ1 cells demonstrate the potential to use this cell 

line for the study of regulation of gene expression in adipocytes. In summary, the 

work presented here lays the foundation for understanding the glucose 

metabolism and pathology of chronic disease like diabetes or obesity in the body. 
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